# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. # # This source code is licensed under the BSD license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import pytest import torch from torch import nn from torch.distributed import rpc import torch.nn.init as init from torch.nn.parameter import Parameter from fairscale.nn.model_parallel import initialize as mpu from fairscale.nn.model_parallel import layers from fairscale.nn.pipe import MultiProcessPipe from fairscale.utils.testing import dist_init, get_world_sizes, set_random_seed, spawn_for_all_world_sizes, torch_spawn def run_test_parallel_embedding(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) if torch.distributed.get_rank() == 0: print("> testing parallel embedding with model parallel size {} ...".format(model_parallel_size)) mpu.initialize_model_parallel(model_parallel_size) model_parallel_size = mpu.get_model_parallel_world_size() batch_size = 17 seq_length = 23 vocab_size = 48 hidden_size = 16 seed = 1236 set_random_seed(123) input_data = torch.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size).cuda() loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda() set_random_seed(seed) embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda() output = embedding_original(input_data) loss_original = torch.mul(output, loss_weight).sum() loss_original.backward() set_random_seed(seed) embedding_parallel = layers.ParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda() output = embedding_parallel(input_data) loss_parallel = torch.mul(output, loss_weight).sum() loss_parallel.backward() set_random_seed(seed) embedding_vocab_parallel = layers.VocabParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda() output = embedding_vocab_parallel(input_data) loss_vocab_parallel = torch.mul(output, loss_weight).sum() loss_vocab_parallel.backward() torch.distributed.barrier() error = loss_parallel.sub(loss_original).abs() print(" error in loss (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-12, "error: {}".format(error) torch.distributed.barrier() error = loss_vocab_parallel.sub(loss_original).abs() print(" error in loss (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-12, "error: {}".format(error) weight_grad_orig = torch.split(embedding_original.weight.grad, hidden_size // model_parallel_size, 1)[ mpu.get_model_parallel_rank() ] error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max() print(" error in grad (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-12, "error: {}".format(error) weight_grad_orig = torch.split(embedding_original.weight.grad, vocab_size // model_parallel_size, 0)[ mpu.get_model_parallel_rank() ] error = embedding_vocab_parallel.weight.grad.sub(weight_grad_orig).abs().max() print(" error in grad (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-12, "error: {}".format(error) # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(">> passed the test :-)") def run_test_initialize_affine_weight(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) mpu.initialize_model_parallel(model_parallel_size) if torch.distributed.get_rank() == 0: print("> testing initialize_affine_weight with model parallel size: {}".format(model_parallel_size)) model_parallel_size = mpu.get_model_parallel_world_size() seed = 12345 input_size_coeff = 13 input_size = input_size_coeff * model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * model_parallel_size # --------------- # Column parallel # --------------- weight = torch.empty(output_size_coeff, input_size) set_random_seed(seed) layers._initialize_affine_weight(weight, output_size, input_size, output_size_coeff, 0, torch.nn.init.normal_) # Target. set_random_seed(seed) master_weight = torch.empty(output_size, input_size) torch.nn.init.normal_(master_weight) rank = mpu.get_model_parallel_rank() my_weight = torch.split(master_weight, output_size_coeff, dim=0)[rank].contiguous().clone() # Compare. error = weight.sub(my_weight).abs().max() torch.distributed.barrier() print( " column parallel max error (should be zero) on global rank {}: {}".format( torch.distributed.get_rank(), error ) ) assert error < 1.0e-6 # ------------ # Row parallel # ------------ weight = torch.empty(output_size, input_size_coeff) set_random_seed(seed) layers._initialize_affine_weight(weight, output_size, input_size, input_size_coeff, 1, torch.nn.init.normal_) # Target. set_random_seed(seed) master_weight = torch.empty(output_size, input_size) torch.nn.init.normal_(master_weight) rank = mpu.get_model_parallel_rank() my_weight = torch.split(master_weight, input_size_coeff, dim=1)[rank].contiguous().clone() # Compare. error = weight.sub(my_weight).abs().max() torch.distributed.barrier() print( " row parallel max error (should be zero) on global rank {}: {}".format(torch.distributed.get_rank(), error) ) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") class IdentityLayer2D(torch.nn.Module): def __init__(self, m, n): super(IdentityLayer2D, self).__init__() self.weight = Parameter(torch.Tensor(m, n)) torch.nn.init.xavier_normal_(self.weight) def forward(self): return self.weight def run_test_column_parallel_linear(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) mpu.initialize_model_parallel(model_parallel_size) if torch.distributed.get_rank() == 0: print("> testing ColumnParallelLinear with model parallel size: {}".format(model_parallel_size)) model_parallel_size = mpu.get_model_parallel_world_size() seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * model_parallel_size batch_size = 7 # Network identity_layer = IdentityLayer2D(batch_size, input_size).cuda() linear_layer = layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda() loss_weight = torch.randn([batch_size, output_size]).cuda() # Forward input_ = identity_layer() output = linear_layer(input_) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # Values. dLdY = loss_weight X = identity_layer.weight A = linear_layer.master_weight.cuda() dLdA = torch.matmul(dLdY.t(), X) dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1) dLdX = torch.matmul(dLdY, A) rank = mpu.get_model_parallel_rank() my_dLdA = torch.split(dLdA, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdA.sub(linear_layer.weight.grad).abs().max() torch.distributed.barrier() print(" error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 my_dLdb = torch.split(dLdb, output_size_coeff, dim=0)[rank].contiguous().clone() error = my_dLdb.sub(linear_layer.bias.grad).abs().max() torch.distributed.barrier() print(" error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 error = dLdX.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print(" error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") def run_test_row_parallel_linear(rank, model_parallel_size, filename, filename_rpc): dist_init(rank, model_parallel_size, filename, filename_rpc) mpu.initialize_model_parallel(model_parallel_size) if torch.distributed.get_rank() == 0: print("> testing RowParallelLinear with model parallel size: {}".format(model_parallel_size)) model_parallel_size = mpu.get_model_parallel_world_size() seed = 12345 set_random_seed(seed) input_size_coeff = 13 input_size = input_size_coeff * model_parallel_size output_size_coeff = 17 output_size = output_size_coeff * model_parallel_size batch_size = 7 # Network identity_layer = IdentityLayer2D(batch_size, input_size).cuda() linear_layer = layers.RowParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda() loss_weight = torch.randn([batch_size, output_size]).cuda() # Forward input_ = identity_layer() output = linear_layer(input_) loss = torch.mul(output, loss_weight).sum() # Backward loss.backward() # Values. dLdY = loss_weight X = identity_layer.weight A = linear_layer.master_weight.cuda() dLdA = torch.matmul(dLdY.t(), X) dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1) dLdX = torch.matmul(dLdY, A) rank = mpu.get_model_parallel_rank() my_dLdA = torch.split(dLdA, input_size_coeff, dim=1)[rank].contiguous().clone() error = my_dLdA.sub(linear_layer.weight.grad).abs().max() torch.distributed.barrier() print(" error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 error = dLdb.sub(linear_layer.bias.grad).abs().max() torch.distributed.barrier() print(" error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 error = dLdX.sub(identity_layer.weight.grad).abs().max() torch.distributed.barrier() print(" error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error)) assert error < 1.0e-6 # Reset groups mpu.destroy_model_parallel() torch.distributed.barrier() if torch.distributed.get_rank() == 0: print(" >> passed the test :-)") def run_test_pipe(rank, world_size, filename, filename_rpc, skip_dist_init=False): pipe_world_size = 2 if world_size == 1: return if not skip_dist_init: dist_init(rank, world_size, filename, filename_rpc) else: os.environ["MASTER_ADDR"] = "localhost" os.environ["MASTER_PORT"] = "29502" rpc.init_rpc(f"Test{rank}", rank=rank, world_size=world_size) mpu.initialize_model_parallel(world_size / pipe_world_size, pipe_world_size) model_parallel_size = mpu.get_model_parallel_world_size() if torch.distributed.get_rank() == 0: print( "> testing Sequential + MultiProcessPipe with model parallel size: {}, pipe: {}".format( model_parallel_size, pipe_world_size ) ) chunk_size = 4 seed = 12345 set_random_seed(seed) input_size_coeff = 3 input_size = input_size_coeff * model_parallel_size output_size_coeff = 7 output_size = output_size_coeff * model_parallel_size batch_size = 3 * chunk_size target = torch.rand((batch_size, input_size), requires_grad=True).cuda() print(f"target = {target}") identity = IdentityLayer2D(batch_size, input_size).cuda() pipeline_devices = mpu.get_pipeline_parallel_group() set_random_seed(seed) model = nn.Sequential( layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True, bias=False).cuda(), nn.ReLU(), layers.RowParallelLinear(output_size, input_size, keep_master_weight_for_test=True, bias=False).cuda(), ) set_random_seed(seed) reference = [ nn.Linear(input_size, output_size, bias=False).cuda(), nn.ReLU(), nn.Linear(output_size, input_size, bias=False).cuda(), ] print(f"setup {reference[0].weight.size()}, {model[0].weight.size()}, {(input_size, output_size)}") print(f"setup {reference[2].weight.size()}, {(output_size, input_size)}") reference[0].weight = Parameter(model[0].get_master_weight().clone()).cuda() reference[2].weight = Parameter(model[2].get_master_weight().clone()).cuda() reference = nn.Sequential(*reference) def grad_graph(depth, grad): result = depth * " " + str(grad) if grad: for x in grad.next_functions: result += "\n" + grad_graph(depth + 1, x[0]) return result def check_weights(x, y, key: str, index=None): for i in [2, 0]: if index is not None and i != index: continue left = x[i].get_master_weight() right = y[i].weight.data if not torch.allclose(left, right, atol=1.0e-6) or index is not None: print(f"check_weights {key}-{i}: left = {left}, \nright = {right}") if not torch.equal(left, right): print(f"check_weights NOT_EQUAL {key}-{i}: left = {left}, \nright = {right}") assert torch.allclose(left, right, atol=1.0e-6) def dump_opt_params(opt): for i, group in enumerate(opt.param_groups): for j, p in enumerate(group["params"]): print(f"{torch.distributed.get_rank()}:param {(i,j)} = {p}") print(f"{torch.distributed.get_rank()}:param.grad {(i,j)} = {p.grad}") def forward_model(model_, target, step=False): optimizer = torch.optim.SGD(model_.parameters(), lr=0.01, momentum=0.9) optimizer.zero_grad() model_.zero_grad() output = model_(identity()) loss = nn.MSELoss() model_.zero_grad() if step: loss(output, target).backward() saved_weight_0 = model_[0].weight.data.clone() saved_weight_2 = model_[2].weight.data.clone() dump_opt_params(optimizer) optimizer.step() assert not torch.allclose(saved_weight_0, model_[0].weight.data, atol=1.0e-6) assert not torch.allclose(saved_weight_2, model_[2].weight.data, atol=1.0e-6) return output output = forward_model(model, target) reference_output = forward_model(reference, target) error = reference_output.sub(output).max() torch.distributed.barrier() assert error < 1.0e-6 output = forward_model(model, target) error = reference_output.sub(output).max() torch.distributed.barrier() assert error < 1.0e-6 output = forward_model(model, target) error = reference_output.sub(output).max() torch.distributed.barrier() assert error < 1.0e-6 check_weights(model, reference, "before") saved_weight_0 = model[0].weight.data.clone() saved_weight_2 = model[2].weight.data.clone() output = forward_model(model, target, step=True) error = reference_output.sub(output).max() assert error < 1.0e-6 model[0].weight.data = saved_weight_0 model[2].weight.data = saved_weight_2 worker_map = {i: f"Test{i}" for i in range(torch.distributed.get_world_size())} if pipe_world_size == 2: print(f"actually doing pipe stuff now") assert torch.equal(saved_weight_0, model[0].weight.data) assert torch.equal(saved_weight_2, model[2].weight.data) pipe_model = MultiProcessPipe( model, [2, 1], group=pipeline_devices, worker_map=worker_map, input_device=torch.cuda.current_device(), chunks=chunk_size, ).cuda() torch.distributed.barrier() pipe_rank = torch.distributed.get_rank(group=mpu.get_pipeline_parallel_group()) print(f"pipe rank is {pipe_rank}") if pipe_rank == 0: assert torch.equal(saved_weight_0, pipe_model[0].weight.data) else: if not torch.equal(saved_weight_2, pipe_model[0].weight.data): print(f"ne {pipe_rank}: left\n{saved_weight_2}\nright:\n{pipe_model[0].weight.data}") assert torch.equal(saved_weight_2, pipe_model[0].weight.data) optimizer = torch.optim.SGD(pipe_model.parameters(), lr=0.01, momentum=0.9) optimizer.zero_grad() if pipe_rank == 0: assert torch.equal(saved_weight_0, pipe_model[0].weight.data) print(f"runner {rank}:\n{pipe_model[0].weight.data}") else: assert torch.equal(saved_weight_2, pipe_model[0].weight.data) print(f"runner {rank}:\n{pipe_model[0].weight.data}") if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1: check_weights(model, reference, "pre-pipe", index=2) else: check_weights(model, reference, "pre-pipe", index=0) pipe_output = pipe_model(identity()) print(f"exited pipe for {rank}") forward_model(reference, target, step=True) print(f"pipe_output {rank} = {pipe_output}") print(f"reference_output {rank} = {reference_output}") torch.distributed.barrier() if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1: error = reference_output.sub(pipe_output.cuda()).max() if error >= 1.0e-6: print(f"error bad {error}") assert error < 1.0e-6 loss = nn.MSELoss() failed = False pipe_output.retain_grad() with torch.autograd.profiler.profile() as prof: try: loss(pipe_output, target).backward() except Exception as e: failed = True print(f"got {e} while doing backward, deadlock?") if failed: raise RuntimeError("failed somehow") dump_opt_params(optimizer) optimizer.step() print(f"calling check_weights on master") check_weights(model, reference, "pipe", index=2) print(f"waiting for barrier on master, pid={os.getpid()}") else: print(f"calling backwards on slave, pid={os.getpid()}") failed = False with torch.autograd.profiler.profile() as prof: try: pipe_model.back_helper(pipe_output) except Exception as e: failed = True print(f"got {e} while doing backward, deadlock?") if failed: raise RuntimeError("failed somehow") dump_opt_params(optimizer) print(f"calling step on slave") optimizer.step() print(f"calling check_weights on slave") check_weights(model, reference, "pipe", index=0) print(f"waiting for barrier on slave") pipe_model.zero_grad() torch.distributed.barrier() pipe_model.eval() pipe_output = pipe_model(identity()) updated_ref_output = forward_model(reference, target) if torch.distributed.get_rank(mpu.get_pipeline_parallel_group()) == 1: error = updated_ref_output.sub(pipe_output.cuda()).max() print(f"outputs are ref:\n{updated_ref_output}\npipe:\n{pipe_output}") assert error < 1.0e-6 torch.distributed.barrier() print(f"finished waiting for barrier on, pid={os.getpid()}") print(f"really exited pipe for {rank}") rpc.shutdown() torch.distributed.destroy_process_group() torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def test_affine_weight(): spawn_for_all_world_sizes(run_test_initialize_affine_weight) def test_embedding(): spawn_for_all_world_sizes(run_test_parallel_embedding) def test_column_parallel(): spawn_for_all_world_sizes(run_test_column_parallel_linear) @pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="only works on mpi") def test_row_parallel(): spawn_for_all_world_sizes(run_test_row_parallel_linear) @torch_spawn([2]) @pytest.mark.skipif("OMPI_COMM_WORLD_RANK" not in os.environ, reason="only works on mpi") @pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") def mpi_pipe(): mpu.destroy_model_parallel() _, tempfile_init = tempfile.mkstemp() _, tempfile_rpc_init = tempfile.mkstemp() run_test_pipe( torch.distributed.get_rank(), torch.distributed.get_world_size(), tempfile_init, tempfile_rpc_init, skip_dist_init=True, ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") def test_pipe_layer(): world_sizes = [x for x in get_world_sizes() if x <= torch.cuda.device_count() / 2] spawn_for_all_world_sizes(run_test_pipe, args=[False]) @pytest.mark.skipif(not torch.cuda.is_available(), reason="cuda required") @pytest.mark.skip(reason="potential deadlock in nccl with multiple processes using the same gpu") def test_eight_pipe_layer(): world_sizes = [x for x in get_world_sizes() if x <= torch.cuda.device_count() / 2] spawn_for_all_world_sizes(run_test_pipe, [8])