test_layers.py 13.7 KB
Newer Older
Tom Birch's avatar
Tom Birch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# coding=utf-8

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
from torch import nn
import torch.nn.init as init
from torch.nn.parameter import Parameter

from fairscale.nn.model_parallel import initialize as mpu
from fairscale.nn.model_parallel import layers
from fairscale.nn.pipe import Pipe
from tests.nn.model_parallel.commons import dist_init, get_world_sizes, set_random_seed, spawn_for_all_world_sizes


def run_test_parallel_embedding(rank, model_parallel_size):
    dist_init(rank, model_parallel_size)

    if torch.distributed.get_rank() == 0:
        print("> testing parallel embedding with model parallel size {} ...".format(model_parallel_size))

    mpu.initialize_model_parallel(model_parallel_size)
    model_parallel_size = mpu.get_model_parallel_world_size()

    batch_size = 17
    seq_length = 23
    vocab_size = 48
    hidden_size = 16
    seed = 1236

    set_random_seed(123)
    input_data = torch.LongTensor(size=(batch_size, seq_length)).random_(0, vocab_size).cuda()
    loss_weight = torch.randn([batch_size, seq_length, hidden_size]).cuda()

    set_random_seed(seed)
    embedding_original = torch.nn.Embedding(vocab_size, hidden_size).cuda()

    output = embedding_original(input_data)
    loss_original = torch.mul(output, loss_weight).sum()
    loss_original.backward()

    set_random_seed(seed)
    embedding_parallel = layers.ParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_parallel(input_data)
    loss_parallel = torch.mul(output, loss_weight).sum()
    loss_parallel.backward()

    set_random_seed(seed)
    embedding_vocab_parallel = layers.VocabParallelEmbedding(vocab_size, hidden_size, init_method=init.normal_).cuda()
    output = embedding_vocab_parallel(input_data)
    loss_vocab_parallel = torch.mul(output, loss_weight).sum()
    loss_vocab_parallel.backward()

    torch.distributed.barrier()
    error = loss_parallel.sub(loss_original).abs()
    print("   error in loss (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    torch.distributed.barrier()
    error = loss_vocab_parallel.sub(loss_original).abs()
    print("   error in loss (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad, hidden_size // model_parallel_size, 1)[
        mpu.get_model_parallel_rank()
    ]
    error = embedding_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print("   error in grad (parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    weight_grad_orig = torch.split(embedding_original.weight.grad, vocab_size // model_parallel_size, 0)[
        mpu.get_model_parallel_rank()
    ]
    error = embedding_vocab_parallel.weight.grad.sub(weight_grad_orig).abs().max()
    print("   error in grad (vocab parallel) on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-12, "error: {}".format(error)

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(">> passed the test :-)")


def run_test_initialize_affine_weight(rank, model_parallel_size):
    dist_init(rank, model_parallel_size)

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing initialize_affine_weight with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size

    # ---------------
    # Column parallel
    # ---------------
    weight = torch.empty(output_size_coeff, input_size)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size, output_size_coeff, 0, torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, output_size_coeff, dim=0)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print(
        "   column parallel max error (should be zero) on global rank {}: {}".format(
            torch.distributed.get_rank(), error
        )
    )
    assert error < 1.0e-6

    # ------------
    # Row parallel
    # ------------
    weight = torch.empty(output_size, input_size_coeff)
    set_random_seed(seed)
    layers._initialize_affine_weight(weight, output_size, input_size, input_size_coeff, 1, torch.nn.init.normal_)
    # Target.
    set_random_seed(seed)
    master_weight = torch.empty(output_size, input_size)
    torch.nn.init.normal_(master_weight)
    rank = mpu.get_model_parallel_rank()
    my_weight = torch.split(master_weight, input_size_coeff, dim=1)[rank].contiguous().clone()

    # Compare.
    error = weight.sub(my_weight).abs().max()
    torch.distributed.barrier()
    print(
        "   row parallel max error (should be zero) on global rank {}: {}".format(torch.distributed.get_rank(), error)
    )
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


class IdentityLayer2D(torch.nn.Module):
    def __init__(self, m, n):
        super(IdentityLayer2D, self).__init__()
        self.weight = Parameter(torch.Tensor(m, n))
        torch.nn.init.xavier_normal_(self.weight)

    def forward(self):
        return self.weight


def run_test_column_parallel_linear(rank, model_parallel_size):
    dist_init(rank, model_parallel_size)

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing ColumnParallelLinear with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

    rank = mpu.get_model_parallel_rank()
    my_dLdA = torch.split(dLdA, output_size_coeff, dim=0)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    my_dLdb = torch.split(dLdb, output_size_coeff, dim=0)[rank].contiguous().clone()
    error = my_dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


def run_test_row_parallel_linear(rank, model_parallel_size):
    dist_init(rank, model_parallel_size)

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print("> testing RowParallelLinear with model parallel size: {}".format(model_parallel_size))
    model_parallel_size = mpu.get_model_parallel_world_size()

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7

    # Network
    identity_layer = IdentityLayer2D(batch_size, input_size).cuda()
    linear_layer = layers.RowParallelLinear(input_size, output_size, keep_master_weight_for_test=True).cuda()
    loss_weight = torch.randn([batch_size, output_size]).cuda()
    # Forward
    input_ = identity_layer()
    output = linear_layer(input_)
    loss = torch.mul(output, loss_weight).sum()
    # Backward
    loss.backward()

    # Values.
    dLdY = loss_weight
    X = identity_layer.weight
    A = linear_layer.master_weight.cuda()
    dLdA = torch.matmul(dLdY.t(), X)
    dLdb = torch.matmul(torch.ones(batch_size, 1).cuda().t(), dLdY).view(-1)
    dLdX = torch.matmul(dLdY, A)

    rank = mpu.get_model_parallel_rank()
    my_dLdA = torch.split(dLdA, input_size_coeff, dim=1)[rank].contiguous().clone()
    error = my_dLdA.sub(linear_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdA on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdb.sub(linear_layer.bias.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdb on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    error = dLdX.sub(identity_layer.weight.grad).abs().max()
    torch.distributed.barrier()
    print("   error in dLdX on global rank {}: {}".format(torch.distributed.get_rank(), error))
    assert error < 1.0e-6

    # Reset groups
    mpu.destroy_model_parallel()

    torch.distributed.barrier()
    if torch.distributed.get_rank() == 0:
        print(" >> passed the test :-)")


def run_test_pipe(rank, model_parallel_size):
    pipe_world_size = 2
    dist_init(rank, model_parallel_size)

    mpu.initialize_model_parallel(model_parallel_size)
    if torch.distributed.get_rank() == 0:
        print(
            "> testing Sequential + Pipe with model parallel size: {}, pipe: {}".format(
                model_parallel_size, pipe_world_size
            )
        )
    model_parallel_size = mpu.get_model_parallel_world_size()
    chunk_size = 8

    seed = 12345
    set_random_seed(seed)
    input_size_coeff = 13
    input_size = input_size_coeff * model_parallel_size
    output_size_coeff = 17
    output_size = output_size_coeff * model_parallel_size
    batch_size = 7 * chunk_size

    identity = IdentityLayer2D(batch_size, input_size).cuda()

    pipeline_devices = mpu.get_pipeline_parallel_group()
    if pipe_world_size == 2 and len(pipeline_devices) == 1:
        pipeline_devices.append(pipeline_devices[0] + model_parallel_size)

    set_random_seed(seed)
    model = nn.Sequential(
        layers.ColumnParallelLinear(input_size, output_size, keep_master_weight_for_test=True, bias=False).cuda(),
        nn.ReLU(),
        layers.RowParallelLinear(output_size, input_size, keep_master_weight_for_test=True, bias=False).cuda(),
    )

    set_random_seed(seed)
    reference = nn.Sequential(
        nn.Linear(input_size, output_size, bias=False).cuda(),
        nn.ReLU(),
        nn.Linear(output_size, input_size, bias=False).cuda(),
    )

    reference[0].weight.data = model[0].master_weight.cuda()
    reference[-1].weight.data = model[-1].master_weight.cuda()

    loss_weight = torch.randn([batch_size, output_size]).cuda()
    output = model(identity())
    reference_output = reference(identity())

    error = reference_output.sub(output).max()
    torch.distributed.barrier()
    assert error < 1.0e-6

    if pipe_world_size == 2:
        pipe_model = Pipe(model, [2, 1], devices=pipeline_devices, chunks=chunk_size)
        torch.distributed.barrier()
        pipe_output = pipe_model(identity())

        error = reference_output.sub(pipe_output.cuda()).max()
        torch.distributed.barrier()
        assert error < 1.0e-6


torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False


def test_affine_weight():
    spawn_for_all_world_sizes(run_test_initialize_affine_weight)


def test_embedding():
    spawn_for_all_world_sizes(run_test_parallel_embedding)


def test_column_parallel():
    spawn_for_all_world_sizes(run_test_column_parallel_linear)


def test_row_parallel():
    spawn_for_all_world_sizes(run_test_row_parallel_linear)


def test_pipe():
    world_sizes = [x for x in get_world_sizes() if x <= torch.cuda.device_count() / 2]

    spawn_for_all_world_sizes(run_test_pipe, world_sizes)