README.md 7.23 KB
Newer Older
Vittorio Caggiano's avatar
Vittorio Caggiano committed
1
2
![FairScale Logo](./docs/source/_static/img/fairscale-logo.png)

Vittorio Caggiano's avatar
Vittorio Caggiano committed
3
4
5
![PyPI](https://img.shields.io/pypi/v/fairscale)
[![Documentation Status](https://readthedocs.org/projects/fairscale/badge/?version=latest)](https://fairscale.readthedocs.io/en/latest/?badge=latest)
[![CircleCI](https://circleci.com/gh/facebookresearch/fairscale.svg?style=shield)](https://app.circleci.com/pipelines/github/facebookresearch/fairscale/) ![PyPI - License](https://img.shields.io/pypi/l/fairscale) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/facebookresearch/fairscale/blob/master/CONTRIBUTING.md)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
6
--------------------------------------------------------------------------------
Vittorio Caggiano's avatar
Vittorio Caggiano committed
7
8

## Description
VitaliyLi's avatar
VitaliyLi committed
9
FairScale is a PyTorch extension library for high performance and large scale training on one or multiple machines/nodes. This library extends basic PyTorch capabilities while adding new experimental ones.
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
10

VitaliyLi's avatar
VitaliyLi committed
11
FairScale supports:
Vittorio Caggiano's avatar
Vittorio Caggiano committed
12
13
* Parallelism:
   * pipeline parallelism (fairscale.nn.Pipe)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
14
15
16
17
18
* Sharded training:
   * Optimizer state sharding (fairscale.optim.oss)
   * Sharded grad scaler - automatic mixed precision
   * Sharded distributed data parallel
* Optimization at scale:
19
   * AdaScale SGD (from fairscale.optim import AdaScale)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
20
21
22
23


## Requirements

24
* PyTorch >= 1.5.1
Vittorio Caggiano's avatar
Vittorio Caggiano committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

## Installation

Normal installation:
```bash
pip install fairscale
```

Development mode:
```bash
cd fairscale
pip install -r requirements.txt
pip install -e .
```

40
41
42
If either of the above fails, add `--no-build-isolation` to the `pip install` command (this could be a problem with recent versions of pip).


Vittorio Caggiano's avatar
Vittorio Caggiano committed
43
44
## Getting Started
The full documentation (https://fairscale.readthedocs.io/) contains instructions for getting started and extending fairscale.
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
45
46

## Examples
47
### Pipe
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
48
49
50

Run a 4-layer model on 2 GPUs. The first two layers run on cuda:0 and the next two layers run on cuda:1.

51
```python
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
52
53
54
55
56
57
58
59
import torch

import fairscale

model = torch.nn.Sequential(a, b, c, d)
model = fairscale.nn.Pipe(model, balance=[2, 2], devices=[0, 1], chunks=8)
```

60
### Optimizer state sharding (ZeRO)
61
See a more complete example [here](https://github.com/facebookresearch/fairscale/blob/master/benchmarks/oss.py), but a minimal example could look like the following :
62

63
```python
64
import torch
65
import torch.distributed as dist
66
import torch.multiprocessing as mp
67
from fairscale.optim.oss import OSS
68
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
69
70
71
72
73
74

def train(
    rank: int,
    world_size: int,
    epochs: int):

75
76
    # DDP init example
    dist.init_process_group(backend='nccl', init_method="tcp://localhost:29501", rank=rank, world_size=world_size)
77
78

    # Problem statement
79
    model = myAwesomeModel().to(rank)
80
    dataloader = mySuperFastDataloader()
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
81
    loss_fn = myVeryRelevantLoss()
82
83
84
    base_optimizer = torch.optim.SGD # pick any pytorch compliant optimizer here
    base_optimizer_arguments = {} # pass any optimizer specific arguments here, or directly below when instantiating OSS

85
    # Wrap the optimizer in its state sharding brethren
86
87
    optimizer = OSS(params=model.parameters(), optim=base_optimizer, **base_optimizer_arguments)

88
89
90
    # Wrap the model into ShardedDDP, which will reduce gradients to the proper ranks
    model = ShardedDDP(model, optimizer)

91
92
93
94
95
96
97
98
99
100
101
    # Any relevant training loop, nothing specific to OSS. For example:
    model.train()
    for e in range(epochs):
        for batch in dataloader:
            # Train
            model.zero_grad()
            outputs = model(batch["inputs"])
            loss = loss_fn(outputs, batch["label"])
            loss.backward()
            optimizer.step()

102
103
    dist.destroy_process_group()

104
if __name__ == "__main__":
105
    # Supposing that WORLD_SIZE and EPOCHS are somehow defined somewhere
106
107
108
109
110
111
112
113
114
115
116
    mp.spawn(
        train,
        args=(
            WORLD_SIZE,
            EPOCHS,
        ),
        nprocs=WORLD_SIZE,
        join=True,
    )
```

117
### AdaScale SGD
118

119
120
121
122
AdaScale can be used to wrap a SGD optimizer and to be used in DDP (Distributed Data Parallel)
training or non-DDP with gradient accumulation. The benefit is to re-use the same LR
schedule from a baseline batch size when effective batch size is bigger.

123
124
Note that AdaScale does _not_ help increase per-GPU batch size.

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
```python
from torch.optim import SGD
from torch.optim.lr_scheduler import LambdaLR  # or your scheduler
from fairscale.optim import AdaScale

...
optim = AdaScale(SGD(model.parameters(), lr=0.1))
scheduler = LambdaLR(optim, ...)
...
# Note: the train loop should be with DDP or with gradient accumulation.
last_epoch = 0
step = 0
done = False
while not done:
    for sample in dataset:
        ...
        step += optim.gain()
        optim.step()
        epoch = step // len(dataset)
        if last_epoch != epoch:
            scheduler.step()
            last_epoch = epoch
        if epoch > max_epoch:
            done = True
```

151
Primary goal is to allow scaling to bigger batch sizes without losing model accuracy.
152
(However, training time might be longer comparing to without AdaScale.)
153
154

At a high level, we want ML researchers to:
155
  * go parallel more easily (i.e. no need to find new learning rate schedules)
156
  * not worrying about lossing accuracy
157
  * potentially higher GPU efficiency (fewer steps, less networking overhead, etc.)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
158

159
160
# Testing

161
We use circleci to test on PyTorch versions 1.5.1, 1.6.0 and 1.7.1 and CUDA version 10.1. Please create an [issue](https://github.com/facebookresearch/fairscale/issues) if you are having trouble with installation.
162

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
163
164
165
166
167
168
169
## Contributors

See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## License

fairscale is licensed under the [BSD-3-Clause License](LICENSE).
170
171
172
173
174

fairscale.nn.pipe is forked from [torchgpipe](https://github.com/kakaobrain/torchgpipe), Copyright 2019, Kakao Brain, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

fairscale.nn.model_parallel is forked from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), Copyright 2020, NVIDIA CORPORATION, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

175
176
fairscale.optim.adascale is forked from [AdaptDL](https://github.com/petuum/adaptdl), Copyright 2020, Petuum, Inc., licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

Myle Ott's avatar
Myle Ott committed
177
178
fairscale.nn.misc.flatten_params_wrapper is forked from [PyTorch-Reparam-Module](https://github.com/SsnL/PyTorch-Reparam-Module), Copyright 2018, Tongzhou Wang, licensed under [MIT License](https://github.com/SsnL/PyTorch-Reparam-Module/blob/master/LICENSE).

179
180
181
182
183
184
185
## References

Here is a list of all authors on relevant research papers this work is based on:

* torchgpipe: Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim, Sungbin Lim, Sungwoong Kim. [[Paper](https://arxiv.org/pdf/2004.09910.pdf)] [[Code](https://github.com/kakaobrain/torchgpipe)]
* ZeRO: Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. [[Paper](https://arxiv.org/pdf/1910.02054.pdf)] [[Code](https://github.com/microsoft/DeepSpeed)]
* Megatron-LM: Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro. [[Paper](https://arxiv.org/pdf/1909.08053.pdf)][[Code](https://github.com/NVIDIA/Megatron-LM)]
186
* AdaScale SGD: Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, Carlos Guestrin. [[Paper](https://proceedings.icml.cc/static/paper_files/icml/2020/4682-Paper.pdf)]