README.md 6.01 KB
Newer Older
Vittorio Caggiano's avatar
Vittorio Caggiano committed
1
2
![FairScale Logo](./docs/source/_static/img/fairscale-logo.png)

Vittorio Caggiano's avatar
Vittorio Caggiano committed
3
4
5
![PyPI](https://img.shields.io/pypi/v/fairscale)
[![Documentation Status](https://readthedocs.org/projects/fairscale/badge/?version=latest)](https://fairscale.readthedocs.io/en/latest/?badge=latest)
[![CircleCI](https://circleci.com/gh/facebookresearch/fairscale.svg?style=shield)](https://app.circleci.com/pipelines/github/facebookresearch/fairscale/) ![PyPI - License](https://img.shields.io/pypi/l/fairscale) [![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/facebookresearch/fairscale/blob/master/CONTRIBUTING.md)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
6
--------------------------------------------------------------------------------
Vittorio Caggiano's avatar
Vittorio Caggiano committed
7
8
9

## Description
fairscale is a PyTorch extension library for high performance and large scale training for optimizing training on one or across multiple machines/nodes. This library extend basic pytorch capabilities while adding new experimental ones.
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
10
11

fairscale supports:
Vittorio Caggiano's avatar
Vittorio Caggiano committed
12
13
* Parallelism:
   * pipeline parallelism (fairscale.nn.Pipe)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
14
15
16
17
18
* Sharded training:
   * Optimizer state sharding (fairscale.optim.oss)
   * Sharded grad scaler - automatic mixed precision
   * Sharded distributed data parallel
* Optimization at scale:
19
   * AdaScale SGD (from fairscale.optim import AdaScale)
Vittorio Caggiano's avatar
Vittorio Caggiano committed
20
21
22
23


## Requirements

24
* PyTorch >= 1.5.1
Vittorio Caggiano's avatar
Vittorio Caggiano committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

## Installation

Normal installation:
```bash
pip install fairscale
```

Development mode:
```bash
cd fairscale
pip install -r requirements.txt
pip install -e .
```

## Getting Started
The full documentation (https://fairscale.readthedocs.io/) contains instructions for getting started and extending fairscale.
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
42
43

## Examples
44
### Pipe
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
45
46
47

Run a 4-layer model on 2 GPUs. The first two layers run on cuda:0 and the next two layers run on cuda:1.

48
```python
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
49
50
51
52
53
54
55
56
import torch

import fairscale

model = torch.nn.Sequential(a, b, c, d)
model = fairscale.nn.Pipe(model, balance=[2, 2], devices=[0, 1], chunks=8)
```

57
### Optimizer state sharding (ZeRO)
58
See a more complete example [here](https://github.com/facebookresearch/fairscale/blob/master/benchmarks/oss.py), but a minimal example could look like the following :
59

60
```python
61
import torch
62
import torch.distributed as dist
63
import torch.multiprocessing as mp
64
from fairscale.optim.oss import OSS
65
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
66
67
68
69
70
71

def train(
    rank: int,
    world_size: int,
    epochs: int):

72
73
    # DDP init example
    dist.init_process_group(backend='nccl', init_method="tcp://localhost:29501", rank=rank, world_size=world_size)
74
75

    # Problem statement
76
    model = myAwesomeModel().to(rank)
77
    model = ShardedDDP(model, device_ids=[rank])  # this will handle the gradient reduce automatically
78
    dataloader = mySuperFastDataloader()
Benjamin Lefaudeux's avatar
Benjamin Lefaudeux committed
79
    loss_fn = myVeryRelevantLoss()
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    base_optimizer = torch.optim.SGD # pick any pytorch compliant optimizer here
    base_optimizer_arguments = {} # pass any optimizer specific arguments here, or directly below when instantiating OSS

    optimizer = OSS(params=model.parameters(), optim=base_optimizer, **base_optimizer_arguments)

    # Any relevant training loop, nothing specific to OSS. For example:
    model.train()
    for e in range(epochs):
        for batch in dataloader:
            # Train
            model.zero_grad()
            outputs = model(batch["inputs"])
            loss = loss_fn(outputs, batch["label"])
            loss.backward()
            optimizer.step()

96
97
    dist.destroy_process_group()

98
if __name__ == "__main__":
99
    # Supposing that WORLD_SIZE and EPOCHS are somehow defined somewhere
100
101
102
103
104
105
106
107
108
109
110
    mp.spawn(
        train,
        args=(
            WORLD_SIZE,
            EPOCHS,
        ),
        nprocs=WORLD_SIZE,
        join=True,
    )
```

111
### AdaScale SGD
112

113
114
115
116
117
118
119
120
121
122
AdaScale can be used to wrap a SGD optimizer and to be used in DDP (Distributed Data Parallel)
training or non-DDP with gradient accumulation. The benefit is to re-use the same LR
schedule from a baseline batch size when effective batch size is bigger.

Primary goal is to allow scaling to bigger batch sizes without losing model accuracy.

At a high level, we want ML researchers to:
  * go parallel more easily (i.e. reuse the same LR schedule)
  * not worrying about lossing accuracy
  * get same (or higher) GPU efficiency (fewer steps, less networking, etc.)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
123

124
125
# Testing

126
We use circleci to test on PyTorch versions 1.5.1, 1.6.0 and 1.7.0 and CUDA version 10.1. Please create an [issue](https://github.com/facebookresearch/fairscale/issues) if you are having trouble with installation.
127

Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
128
129
130
131
132
133
134
## Contributors

See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## License

fairscale is licensed under the [BSD-3-Clause License](LICENSE).
135
136
137
138
139

fairscale.nn.pipe is forked from [torchgpipe](https://github.com/kakaobrain/torchgpipe), Copyright 2019, Kakao Brain, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

fairscale.nn.model_parallel is forked from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), Copyright 2020, NVIDIA CORPORATION, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

140
141
fairscale.optim.adascale is forked from [AdaptDL](https://github.com/petuum/adaptdl), Copyright 2020, Petuum, Inc., licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

142
143
144
145
146
147
148
## References

Here is a list of all authors on relevant research papers this work is based on:

* torchgpipe: Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim, Sungbin Lim, Sungwoong Kim. [[Paper](https://arxiv.org/pdf/2004.09910.pdf)] [[Code](https://github.com/kakaobrain/torchgpipe)]
* ZeRO: Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. [[Paper](https://arxiv.org/pdf/1910.02054.pdf)] [[Code](https://github.com/microsoft/DeepSpeed)]
* Megatron-LM: Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro. [[Paper](https://arxiv.org/pdf/1909.08053.pdf)][[Code](https://github.com/NVIDIA/Megatron-LM)]
149
* AdaScale SGD: Tyler B. Johnson, Pulkit Agrawal, Haijie Gu, Carlos Guestrin. [[Paper](https://proceedings.icml.cc/static/paper_files/icml/2020/4682-Paper.pdf)]