README.md 3.45 KB
Newer Older
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
1
2
3
4
5
# fairscale
fairscale is a PyTorch extension library for high performance and large scale training.

fairscale supports:
* pipeline parallelism (fairscale.nn.Pipe)
Tom Birch's avatar
Tom Birch committed
6
* tensor parallelism (fairscale.nn.model_parallel)
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
7
8
9
* optimizer state sharding (fairscale.optim.oss)

## Examples
10
### Pipe
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
11
12
13

Run a 4-layer model on 2 GPUs. The first two layers run on cuda:0 and the next two layers run on cuda:1.

14
```python
Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
15
16
17
18
19
20
21
22
import torch

import fairscale

model = torch.nn.Sequential(a, b, c, d)
model = fairscale.nn.Pipe(model, balance=[2, 2], devices=[0, 1], chunks=8)
```

23
### Optimizer state sharding (ZeRO)
24
See a more complete example [here](https://github.com/facebookresearch/fairscale/blob/master/benchmarks/oss.py), but a minimal example could look like the following :
25

26
```python
27
import torch
28
import torch.multiprocessing as mp
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from fairscale.optim.oss import OSS

def train(
    rank: int,
    world_size: int,
    epochs: int):

    # DDP
    dist_init(rank, world_size)

    # Problem statement
    model = myAwesomeModel()
    dataloader = mySuperFastDataloader()
    loss = myVeryRelevantLoss()
    base_optimizer = torch.optim.SGD # pick any pytorch compliant optimizer here
    base_optimizer_arguments = {} # pass any optimizer specific arguments here, or directly below when instantiating OSS

    optimizer = OSS(params=model.parameters(), optim=base_optimizer, **base_optimizer_arguments)

    # Any relevant training loop, nothing specific to OSS. For example:
    model.train()
    for e in range(epochs):
        for batch in dataloader:
            # Train
            model.zero_grad()
            outputs = model(batch["inputs"])
            loss = loss_fn(outputs, batch["label"])
            torch.distributed.all_reduce(loss, op=torch.distributed.ReduceOp.SUM)
            loss /= world_size
            loss.backward()
            optimizer.step()

if __name__ == "__main__":
62
    # Supposing that WORLD_SIZE and EPOCHS are somehow defined somewhere
63
64
65
66
67
68
69
70
71
72
73
74
    mp.spawn(
        train,
        args=(
            WORLD_SIZE,
            EPOCHS,
        ),
        nprocs=WORLD_SIZE,
        join=True,
    )
```


Mandeep Singh Baines's avatar
Mandeep Singh Baines committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
## Requirements

* PyTorch >= 1.4

## Installation

Normal installation:
```bash
pip install .
```

Development mode:
```bash
pip install -e .
```

## Contributors

See the [CONTRIBUTING](CONTRIBUTING.md) file for how to help out.

## License

fairscale is licensed under the [BSD-3-Clause License](LICENSE).
98
99
100
101
102
103
104
105
106
107
108
109

fairscale.nn.pipe is forked from [torchgpipe](https://github.com/kakaobrain/torchgpipe), Copyright 2019, Kakao Brain, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

fairscale.nn.model_parallel is forked from [Megatron-LM](https://github.com/NVIDIA/Megatron-LM), Copyright 2020, NVIDIA CORPORATION, licensed under [Apache License](http://www.apache.org/licenses/LICENSE-2.0).

## References

Here is a list of all authors on relevant research papers this work is based on:

* torchgpipe: Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon Yoon, Ildoo Kim, Sungbin Lim, Sungwoong Kim. [[Paper](https://arxiv.org/pdf/2004.09910.pdf)] [[Code](https://github.com/kakaobrain/torchgpipe)]
* ZeRO: Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, Yuxiong He. [[Paper](https://arxiv.org/pdf/1910.02054.pdf)] [[Code](https://github.com/microsoft/DeepSpeed)]
* Megatron-LM: Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, Bryan Catanzaro. [[Paper](https://arxiv.org/pdf/1909.08053.pdf)][[Code](https://github.com/NVIDIA/Megatron-LM)]