cpu_dlib.cpp 65.2 KB
Newer Older
1
2
3
4
5
6
7
8
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CPU_cPP_
#define DLIB_DNN_CPU_cPP_

// This file contains CPU implementations of the GPU based functions in cuda_dlib.h

#include "cpu_dlib.h"
9
#include "tensor_tools.h"
10
11
12
13
14
15

namespace dlib
{
    namespace cpu 
    {

16
17
18
    // -----------------------------------------------------------------------------------

        void multiply (
19
            bool add_to,
20
21
22
23
24
            tensor& dest,
            const tensor& src1,
            const tensor& src2
        )
        {
25
26
            DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
                dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
27
                dest.nc() == src1.nc() && src1.nc() == src2.nc() );
28
29
30
            const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
            DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
                (src1.num_samples()==1 || src1.num_samples()==MD) &&
31
                (src2.num_samples()==1 || src2.num_samples()==MD) );
32
33
34
35
36

            if (dest.size() == 0)
                return;

            const size_t max_size = std::max(std::max(dest.size(),src1.size()),src2.size());
37
38
39
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
40
41
            if (dest.size() == src1.size() && src1.size() == src2.size())
            {
42
43
44
45
46
47
48
49
50
51
                if (add_to)
                {
                    for (size_t i = 0; i < src1.size(); ++i)
                        d[i] += s1[i]*s2[i];
                }
                else
                {
                    for (size_t i = 0; i < src1.size(); ++i)
                        d[i] = s1[i]*s2[i];
                }
52
53
54
            }
            else if (dest.num_samples() == 1)
            {
55
56
57
58
59
                if (!add_to)
                {
                    for (size_t i = 0; i < dest.size(); ++i)
                        d[i] = 0;
                }
60
61
62
63
64
                for (size_t i = 0; i < max_size; ++i)
                    d[i%dest.size()] += s1[i%src1.size()]*s2[i%src2.size()];
            }
            else
            {
65
66
67
68
69
70
71
72
73
74
                if (add_to)
                {
                    for (size_t i = 0; i < max_size; ++i)
                        d[i] += s1[i%src1.size()]*s2[i%src2.size()];
                }
                else
                {
                    for (size_t i = 0; i < max_size; ++i)
                        d[i] = s1[i%src1.size()]*s2[i%src2.size()];
                }
75
            }
76
77
        }

78
        void multiply_conv (
79
            bool add_to,
80
81
82
83
84
85
86
87
88
89
            tensor& dest,
            const tensor& src1,
            const tensor& src2
        )
        {
            auto d = dest.host();
            auto s1 = src1.host();
            auto s2 = src2.host();
            if (have_same_dimensions(dest,src1))
            {
90
                DLIB_CASSERT(src2.num_samples() == 1 && src2.nr() == 1 && src2.nc() == 1 && src2.k() == src1.k());
91

92
                if (add_to)
93
                {
94
                    for (long n = 0; n < dest.num_samples(); ++n)
95
                    {
96
                        for (long k = 0; k < dest.k(); ++k)
97
                        {
98
                            for (long r = 0; r < dest.nr(); ++r)
99
                            {
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
                                for (long c = 0; c < dest.nc(); ++c)
                                {
                                    *d++ += (*s1++)*s2[k];
                                }
                            }
                        }
                    }
                }
                else
                {
                    for (long n = 0; n < dest.num_samples(); ++n)
                    {
                        for (long k = 0; k < dest.k(); ++k)
                        {
                            for (long r = 0; r < dest.nr(); ++r)
                            {
                                for (long c = 0; c < dest.nc(); ++c)
                                {
                                    *d++ = (*s1++)*s2[k];
                                }
120
121
122
123
124
125
126
                            }
                        }
                    }
                }
            }
            else
            {
127
128
                DLIB_CASSERT(have_same_dimensions(src1,src2));
                DLIB_CASSERT(dest.num_samples() == 1 && dest.nr() == 1 && dest.nc() == 1 && dest.k() == src1.k());
129

130
131
132
133
134
                if (!add_to)
                {
                    for (long k = 0; k < src1.k(); ++k)
                        d[k] = 0;
                }
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

                for (long n = 0; n < src1.num_samples(); ++n)
                {
                    for (long k = 0; k < src1.k(); ++k)
                    {
                        for (long r = 0; r < src1.nr(); ++r)
                        {
                            for (long c = 0; c < src1.nc(); ++c)
                            {
                                d[k] += (*s1++)*(*s2++);
                            }
                        }
                    }
                }
            }
        }

152
153
154
155
156
157
158
159
        void add(
            float beta,
            tensor& dest,
            float alpha,
            const tensor& src
        )
        {
            DLIB_CASSERT(
160
161
162
                  (have_same_dimensions(src, dest) ||
                  (src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1) ||
                  (src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
Davis King's avatar
Davis King committed
163
164
                  (src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
                  (src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1)) &&
165
166
167
168
169
170
171
172
173
174
175
                  is_same_object(src,dest) == false , 
                    "\n\t dest.num_samples(): " << dest.num_samples()
                    <<"\n\t dest.k():           " << dest.k()
                    <<"\n\t dest.nr():          " << dest.nr()
                    <<"\n\t dest.nc():          " << dest.nc()
                    <<"\n\t src.num_samples():  " << src.num_samples()
                    <<"\n\t src.k():            " << src.k()
                    <<"\n\t src.nr():           " << src.nr()
                    <<"\n\t src.nc():           " << src.nc()
                    );

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

            if (beta == 0 && alpha == 0)
            {
                dest = 0;
                return;
            }

            auto d = dest.host();
            auto s = src.host();
            for (long n = 0; n < dest.num_samples(); ++n)
            {
                const auto sn = src.num_samples()==1 ? 0:n;
                for (long k = 0; k < dest.k(); ++k)
                {
                    const auto sk = src.k()==1 ? 0:k;
                    for (long r = 0; r < dest.nr(); ++r)
                    {
                        const auto sr = src.nr()==1 ? 0:r;
                        for (long c = 0; c < dest.nc(); ++c)
                        {
                            const auto sc = src.nc()==1 ? 0:c;

                            const auto s_idx = ((sn*src.k() + sk)*src.nr() + sr)*src.nc() + sc;
                            *d = beta*(*d) + alpha*s[s_idx];
                            ++d;
                        }
                    }
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                }
            }
        }

    // ----------------------------------------------------------------------------------------

        void add (
            tensor& dest,
            const tensor& src1,
            const tensor& src2
        )
        {
            auto d = dest.host();
            auto s1 = src1.host();
            auto s2 = src2.host();

            // Do the simple and fast version if everything has the same dimensions
            if (have_same_dimensions(dest, src1) &&
                have_same_dimensions(dest, src2))
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    d[i] = s1[i] + s2[i];
                return;
            }

            // Otherwise, do the more complex version with bounds checking.
            for (long n = 0; n < dest.num_samples(); ++n)
            {
                for (long k = 0; k < dest.k(); ++k)
                {
                    for (long r = 0; r < dest.nr(); ++r)
                    {
                        for (long c = 0; c < dest.nc(); ++c)
                        {
                            float v1 = 0;
                            float v2 = 0;

                            // if this index is inside src1
                            if (n < src1.num_samples() && 
                                k < src1.k() && 
                                r < src1.nr() && 
                                c < src1.nc() )
                            {
                                const auto s_idx = ((n*src1.k() + k)*src1.nr() + r)*src1.nc() + c;
                                v1 = s1[s_idx];
                            }

                            // if this index is inside src2
                            if (n < src2.num_samples() && 
                                k < src2.k() && 
                                r < src2.nr() && 
                                c < src2.nc() )
                            {
                                const auto s_idx = ((n*src2.k() + k)*src2.nr() + r)*src2.nc() + c;
                                v2 = s2[s_idx];
                            }

                            *d = v1 + v2;
                            ++d;
                        }
                    }
264
265
266
267
268
269
                }
            }
        }

    // ----------------------------------------------------------------------------------------

270
        void assign_bias_gradient (
271
272
273
274
275
276
277
278
279
            tensor& grad,
            const tensor& gradient_input
        )
        {
            DLIB_CASSERT(
                  grad.num_samples() == 1 &&
                  gradient_input.k() == grad.k() &&
                  gradient_input.nr() == grad.nr() &&
                  gradient_input.nc() == grad.nc() &&
280
                  gradient_input.size() > 0);
281
282
283
284
285
286
287

            auto out = grad.host();
            auto in = gradient_input.host();

            for (size_t i = 0; i < grad.size(); ++i)
                out[i] = *in++;

288
            for (long j = 1; j < gradient_input.num_samples(); ++j)
289
290
291
292
293
294
            {
                for (size_t i = 0; i < grad.size(); ++i)
                    out[i] += *in++;
            }
        }

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    // ------------------------------------------------------------------------------------

        void assign_conv_bias_gradient (
            tensor& grad,
            const tensor& gradient_input
        )
        {
            DLIB_CASSERT(
                  grad.num_samples() == 1 &&
                  grad.k()  >= 1 &&
                  grad.nr() == 1 &&
                  grad.nc() == 1 &&
                  gradient_input.k() == grad.k() &&
                  gradient_input.size() > 0 && 
                  is_same_object(grad,gradient_input) == false
310
                  );
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

            auto g = grad.host();
            auto gi = gradient_input.host();

            for (long k = 0; k < gradient_input.k(); ++k)
                g[k] = 0;

            for (long n = 0; n < gradient_input.num_samples(); ++n)
            {
                for (long k = 0; k < gradient_input.k(); ++k)
                {
                    for (long r = 0; r < gradient_input.nr(); ++r)
                    {
                        for (long c = 0; c < gradient_input.nc(); ++c)
                        {
                            g[k] += (*gi++);
                        }
                    }
                }
            }
        }

333
334
335
    // -----------------------------------------------------------------------------------

        void affine_transform(
336
            tensor& dest,
337
338
339
340
341
            const tensor& src,
            const float A,
            const float B
        )
        {
342
            DLIB_CASSERT(dest.size()==src.size());
343
344
345
346
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = A*s[i] + B;
347
348
        }

349
350
351
352
353
354
355
356
357
        void affine_transform(
            tensor& dest,
            const tensor& src1,
            const tensor& src2,
            const float A,
            const float B,
            const float C
        )
        {
358
359
            DLIB_CASSERT(dest.size()==src1.size());
            DLIB_CASSERT(dest.size()==src2.size());
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
            for (size_t i = 0; i < src1.size(); ++i)
                d[i] = A*s1[i] + B*s2[i] + C;
        }

        void affine_transform(
            tensor& dest,
            const tensor& src1,
            const tensor& src2,
            const tensor& src3,
            const float A,
            const float B,
            const float C,
            const float D
        )
        {
378
379
380
            DLIB_CASSERT(dest.size()==src1.size());
            DLIB_CASSERT(dest.size()==src2.size());
            DLIB_CASSERT(dest.size()==src3.size());
381
382
383
384
385
386
387
388
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
            const auto s3 = src3.host();
            for (size_t i = 0; i < src1.size(); ++i)
                d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D;
        }

389
390
391
392
393
394
395
396
397
398
399
400
        void affine_transform_range(
            size_t begin,
            size_t end,
            tensor& dest,
            const tensor& src1,
            const tensor& src2,
            const tensor& src3,
            const float A,
            const float B,
            const float C
        )
        {
401
402
403
404
            DLIB_CASSERT(dest.size()==src1.size());
            DLIB_CASSERT(dest.size()==src2.size());
            DLIB_CASSERT(dest.size()==src3.size());
            DLIB_CASSERT(begin <= end && end <= dest.size());
405
406
407
408
409
410
411
412
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
            const auto s3 = src3.host();
            for (size_t i = begin; i < end; ++i)
                d[i] = A*s1[i] + B*s2[i] + C*s3[i];
        }

413
414
415
    // -----------------------------------------------------------------------------------

        void affine_transform(
416
            tensor& dest,
417
418
419
420
421
            const tensor& src,
            const tensor& A,
            const tensor& B
        )
        {
422
            DLIB_CASSERT(have_same_dimensions(dest,src));
423
424
425
426
427
            DLIB_CASSERT(
                  ((A.num_samples()==1 && B.num_samples()==1) ||
                  (A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples())) &&
                  A.nr()==B.nr() && B.nr()==src.nr() &&
                  A.nc()==B.nc() && B.nc()==src.nc() &&
428
                  A.k() ==B.k()  && B.k()==src.k());
429
430
431
432
433
434
435
436

            auto d = dest.host();
            auto s = src.host();
            const auto a = A.host();
            const auto b = B.host();
            if (A.num_samples() == 1)
            {
                const long num = src.size()/src.num_samples();
Davis King's avatar
Davis King committed
437
                for (long i = 0; i < src.num_samples(); ++i)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
                {
                    for (long j = 0; j < num; ++j)
                    {
                        *d = a[j]*(*s) + b[j];
                        d++;
                        s++;
                    }
                }
            }
            else
            {
                for (size_t i = 0; i < src.size(); ++i)
                    d[i] = a[i]*s[i] + b[i];
            }
452
453
        }

454
455
456
457
458
459
460
461
462
    // -----------------------------------------------------------------------------------

        void affine_transform_conv(
            tensor& dest,
            const tensor& src,
            const tensor& A,
            const tensor& B
        )
        {
463
464
            DLIB_CASSERT(have_same_dimensions(dest,src));
            DLIB_CASSERT(have_same_dimensions(A,B));
465
466
467
            DLIB_CASSERT(A.num_samples() == 1 &&
                         A.nr() == 1 &&
                         A.nc() == 1 &&
468
                         A.k() == src.k());
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

            auto d = dest.host();
            auto s = src.host();
            const auto a = A.host();
            const auto b = B.host();
            for (long n = 0; n < dest.num_samples(); ++n)
            {
                for (long k = 0; k < dest.k(); ++k)
                {
                    for (long r = 0; r < dest.nr(); ++r)
                    {
                        for (long c = 0; c < dest.nc(); ++c)
                        {
                            *d++ = a[k]*(*s++) + b[k];
                        }
                    }
                }
            }
        }

Davis King's avatar
Davis King committed
489
490
491
    // -----------------------------------------------------------------------------------

        void compute_adam_update (
492
493
            size_t begin,
            size_t end,
Davis King's avatar
Davis King committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            tensor& s,
            tensor& m,
            tensor& v,
            const float t,
            const float learning_rate,
            const float weight_decay,
            const float momentum1,
            const float momentum2,
            const tensor& params,
            const tensor& params_grad
        )
        {
            DLIB_CASSERT(s.size() == m.size() &&
                         s.size() == v.size() &&
                         s.size() == params.size() &&
509
510
                         s.size() == params_grad.size());
            DLIB_CASSERT(begin <= end && end <= params.size());
Davis King's avatar
Davis King committed
511
512
513
514
515
516
517
518
519
520
521
522
            const float eps = 1e-8;
            const float alpha = learning_rate*std::sqrt(1-std::pow(momentum2,t))/(1-std::pow(momentum1, t));

            // The loop is equivalent to doing this:
            //   m = momentum1*m + (1-momentum1)    *   (weight_decay*params + params_grad);
            //   v = momentum2*v + (1-momentum2)*squared(weight_decay*params + params_grad);
            //   s = -alpha*m/(sqrt(v) + eps);
            auto pm = m.host();
            auto pv = v.host();
            auto ps = s.host_write_only();
            auto pparams = params.host();
            auto ppgrad = params_grad.host();
523
            for (size_t i = begin; i < end; ++i)
Davis King's avatar
Davis King committed
524
525
526
527
528
529
530
531
            {
                float g = weight_decay*pparams[i] + ppgrad[i];
                pm[i] = momentum1*pm[i] + (1-momentum1)*g;
                pv[i] = momentum2*pv[i] + (1-momentum2)*g*g;
                ps[i] = -alpha*pm[i]/(std::sqrt(pv[i]) + eps);
            }
        }

532
533
    // -----------------------------------------------------------------------------------

534
        void batch_normalize_inference (
535
            const double eps,
536
537
538
539
540
            resizable_tensor& dest,
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta,
            const tensor& running_means,
541
            const tensor& running_variances
542
543
544
545
546
547
548
549
550
        )
        {
            DLIB_CASSERT(
                gamma.num_samples() == 1 && 
                gamma.nr() == src.nr() &&
                gamma.nc() == src.nc() &&
                gamma.k()  == src.k() &&
                have_same_dimensions(gamma, beta) &&
                have_same_dimensions(gamma, running_means) &&
551
552
                have_same_dimensions(gamma, running_variances) && 
                eps > 0, 
553
554
555
556
557
558
559
560
561
562
563
564
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nrunning_means.num_samples(): " << running_means.num_samples() << 
                "\nrunning_means.k():   " << running_means.k() << 
                "\nrunning_means.nr():  " << running_means.nr() << 
                "\nrunning_means.nc():  " << running_means.nc() << 
565
566
567
568
                "\nrunning_variances.num_samples(): " << running_variances.num_samples() << 
                "\nrunning_variances.k():   " << running_variances.k() << 
                "\nrunning_variances.nr():  " << running_variances.nr() << 
                "\nrunning_variances.nc():  " << running_variances.nc() << 
569
570
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
571
572
                "\nsrc.nc():  " << src.nc() <<
                "\neps:  " << eps 
573
574
575
576
577
578
579
580
            );
            dest.copy_size(src);

            auto d = dest.host();
            auto s = src.host();
            auto g = gamma.host();
            auto b = beta.host();
            auto m = running_means.host();
581
            auto v = running_variances.host();
582
583
584
585
586
587

            const long num = src.k()*src.nr()*src.nc();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < num; ++k)
                {
588
                    *d = g[k]*(*s - m[k])/std::sqrt(v[k]+eps) + b[k];
589
590
591
592
593
594
                    ++d;
                    ++s;
                }
            }
        }

595
        void batch_normalize (
596
            const double eps,
597
598
            resizable_tensor& dest,
            resizable_tensor& means,
599
            resizable_tensor& invstds,
600
601
            const double averaging_factor,
            resizable_tensor& running_means,
602
            resizable_tensor& running_variances,
603
604
605
606
607
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta 
        )
        {
608
            DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
609
610
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
611
612
613
614
615
616
            DLIB_CASSERT(
                src.num_samples() > 1 &&
                gamma.num_samples() == 1 && 
                beta.num_samples() == 1 && 
                gamma.nr() == beta.nr() && beta.nr() == src.nr() &&
                gamma.nc() == beta.nc() && beta.nc() == src.nc() &&
617
618
                gamma.k()  == beta.k()  && beta.k() == src.k() &&
                eps > 0, 
619
620
621
622
623
624
625
626
627
628
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
629
630
                "\nsrc.nc():  " << src.nc() <<
                "\neps:  " << eps 
631
632
633
634
            );

            dest.copy_size(src);
            means.set_size(1, src.k(), src.nr(), src.nc());
635
            invstds.set_size(1, src.k(), src.nr(), src.nc());
636

637
            // first compute means and invstds
638
            means = 0;
639
640
            invstds = 0;
            const auto p_invstds = invstds.host();
641
642
643
644
645
646
647
648
649
650
            const auto p_means = means.host();
            auto p_src = src.host();
            const long num = src.k()*src.nr()*src.nc();
            // compute means, and sum of squares
            for (long i = 0; i < num; ++i)
            {
                for (long n = 0; n < src.num_samples(); ++n)
                {
                    float val = p_src[n*num+i];
                    p_means[i] += val;
651
                    p_invstds[i] += val*val;
652
653
654
                }
            }
            means /= src.num_samples();
655
            invstds /= src.num_samples();
656
            // copy data back to host
657
            invstds.host(); means.host();
658
659

            // compute variances 
660
661
662
            running_variances.copy_size(invstds);
            auto rvar = running_variances.host();
            // This scale makes the running variances unbiased.
663
            const double scale = (src.num_samples())/(src.num_samples()-1.0);
664
665
            for (long i = 0; i < num; ++i)
            {
666
                auto actual_var = p_invstds[i] - p_means[i]*p_means[i];
667
668
669
670
671
                if (averaging_factor == 1)
                    rvar[i] = scale*actual_var;
                else
                    rvar[i] = (1-averaging_factor)*rvar[i] + scale*averaging_factor*actual_var;

672
                p_invstds[i] = 1.0f/std::sqrt(actual_var + eps);
673
674
675
676
677
678
679
680
681
682
            }

            p_src = src.host();
            auto p_dest = dest.host();
            const auto p_gamma = gamma.host();   
            const auto p_beta = beta.host();   
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
683
                    *p_dest = (*p_src - p_means[i])*p_invstds[i];
684
685
686
687
688
                    *p_dest = (*p_dest)*p_gamma[i] + p_beta[i];
                    ++p_src;
                    ++p_dest;
                }
            }
689

690
            // now keep track of the running means 
691
692
693
694
695
            running_means.copy_size(means);
            if (averaging_factor != 1)
                running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
            else
                running_means = means;
696
697
        }

698
        void batch_normalize_gradient (
699
            const double eps,
700
701
            const tensor& gradient_input,
            const tensor& means,
702
            const tensor& invstds,
703
704
705
706
707
708
709
710
711
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
        )
        {

            const long num = src.k()*src.nr()*src.nc();
712
713
714
715
716
717
718
719
720
            DLIB_CASSERT(src.num_samples() > 1);
            DLIB_CASSERT(num == (long)means.size());
            DLIB_CASSERT(num == (long)invstds.size());
            DLIB_CASSERT(num == (long)gamma.size());
            DLIB_CASSERT(num == (long)gamma_grad.size());
            DLIB_CASSERT(num == (long)beta_grad.size());
            DLIB_CASSERT(have_same_dimensions(gradient_input, src));
            DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
            DLIB_CASSERT(eps > 0);
721
722
723

            beta_grad = 0;
            gamma_grad = 0;
724
725
726
727
728
            auto p_grad = gradient_input.host();
            auto p_src = src.host();
            const auto p_gamma = gamma.host();   
            const auto p_gamma_grad = gamma_grad.host();   
            const auto p_beta_grad = beta_grad.host();   
729
            const auto p_invstds = invstds.host();
730
731
            const auto p_means = means.host();

732
            resizable_tensor dvars, dmeans;
733
            dvars.copy_size(invstds);
734
735
736
737
738
739
740
741
742
743
            dmeans.copy_size(means);
            dvars = 0;
            dmeans = 0;
            const auto p_dvars = dvars.host();
            const auto p_dmeans = dmeans.host();

            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
744
                    const float x_hat = (*p_src - p_means[i])*p_invstds[i];
745
746
747
748
749
                    p_beta_grad[i] += *p_grad;
                    p_gamma_grad[i] += (*p_grad)*x_hat;

                    const float dx = *p_grad * p_gamma[i];

750
                    p_dvars[i] += dx*(*p_src - p_means[i])*-0.5*std::pow(p_invstds[i], 3.0f);
751
752
753
754
755
756

                    ++p_grad;
                    ++p_src;
                }
            }

757
            const float invnum = 1.0f/src.num_samples();
758
759
760
761
762
763
764
765
            p_grad = gradient_input.host();
            p_src = src.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
                    const float dx = *p_grad * p_gamma[i];

766
                    p_dmeans[i] += dx*-p_invstds[i] + p_dvars[i] * -2*(*p_src - p_means[i])*invnum;
767
768
769
770
771
772
773
774
775
776
777
778
779
780

                    ++p_grad;
                    ++p_src;
                }
            }
            p_grad = gradient_input.host();
            p_src = src.host();
            auto p_src_grad = src_grad.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
                    const float dx = *p_grad * p_gamma[i];

781
                    *p_src_grad += dx*p_invstds[i] + 
782
783
                        p_dvars[i] *2*(*p_src - p_means[i])*invnum + 
                        p_dmeans[i]*invnum;
784
785
786
787
788
789
790
791
792
793
794


                    ++p_grad;
                    ++p_src;
                    ++p_src_grad;
                }
            }
        }

    // ----------------------------------------------------------------------------------------

795
        void batch_normalize_conv_inference (
796
            const double eps,
797
798
799
800
801
            resizable_tensor& dest,
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta,
            const tensor& running_means,
802
            const tensor& running_variances
803
804
805
806
807
808
809
810
811
        )
        {
            DLIB_CASSERT(
                gamma.num_samples() == 1 && 
                gamma.nr() == 1 &&
                gamma.nc() == 1 &&
                gamma.k()  == src.k() &&
                have_same_dimensions(gamma, beta) &&
                have_same_dimensions(gamma, running_means) &&
812
813
                have_same_dimensions(gamma, running_variances) &&
                eps > 0, 
814
815
816
817
818
819
820
821
822
823
824
825
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nrunning_means.num_samples(): " << running_means.num_samples() << 
                "\nrunning_means.k():   " << running_means.k() << 
                "\nrunning_means.nr():  " << running_means.nr() << 
                "\nrunning_means.nc():  " << running_means.nc() << 
826
827
828
829
                "\nrunning_variances.num_samples(): " << running_variances.num_samples() << 
                "\nrunning_variances.k():   " << running_variances.k() << 
                "\nrunning_variances.nr():  " << running_variances.nr() << 
                "\nrunning_variances.nc():  " << running_variances.nc() << 
830
831
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
832
833
                "\nsrc.nc():  " << src.nc() <<
                "\neps:  " << eps 
834
835
836
837
838
839
840
841
            );
            dest.copy_size(src);

            auto d = dest.host();
            auto s = src.host();
            auto g = gamma.host();
            auto b = beta.host();
            auto m = running_means.host();
842
            auto v = running_variances.host();
843
844
845
846
847
848

            const long num = src.nr()*src.nc();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
849
                    const float invstd = 1.0f/std::sqrt(v[k] + eps);
850
851
                    for (long j = 0; j < num; ++j)
                    {
852
                        *d = g[k]*(*s - m[k])*invstd + b[k];
853
854
855
856
857
858
859
                        ++d;
                        ++s;
                    }
                }
            }
        }

860
        void batch_normalize_conv (
861
            const double eps,
862
863
            resizable_tensor& dest,
            resizable_tensor& means,
864
            resizable_tensor& invstds,
865
866
            const double averaging_factor,
            resizable_tensor& running_means,
867
            resizable_tensor& running_variances,
868
869
870
871
872
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta 
        )
        {
873
            DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
874
875
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
876
877
878
879
880
881
882
883
            DLIB_CASSERT(
                src.num_samples() > 1 &&
                gamma.num_samples() == 1 && 
                beta.num_samples() == 1 && 
                gamma.nr() == 1 && 
                beta.nr() == 1 && 
                gamma.nc() == 1 && 
                beta.nc() == 1 && 
884
885
                gamma.k()  == beta.k()  && beta.k() == src.k() &&
                eps > 0, 
886
887
888
889
890
891
892
893
894
895
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
896
897
                "\nsrc.nc():  " << src.nc()  <<
                "\neps:  " << eps 
898
899
900
901
            );

            dest.copy_size(src);
            means.set_size(1, src.k());
902
            invstds.set_size(1, src.k());
903

904
            // first compute means and invstds
905
            means = 0;
906
907
            invstds = 0;
            const auto p_invstds = invstds.host();
908
909
910
911
912
913
914
915
916
917
918
919
920
            const auto p_means = means.host();
            const auto p_gamma = gamma.host();   
            const auto p_beta = beta.host();   
            auto p_src = src.host();
            const long num = src.nr()*src.nc();
            // compute means, and sum of squares
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        p_means[k] += *p_src;
921
                        p_invstds[k] += (*p_src)*(*p_src);
922
923
924
925
926
                        ++p_src;
                    }
                }
            }
            means /= src.num_samples()*num;
927
            invstds /= src.num_samples()*num;
928
            // copy data back to host
929
            invstds.host(); means.host();
930
931
932

            p_src = src.host();
            // compute variances 
933
934
935
            running_variances.copy_size(invstds);
            auto rvar = running_variances.host();
            // This scale makes the running variances unbiased.
936
            const double scale = (src.num_samples()*num)/(src.num_samples()*num-1.0);
937
938
            for (long k = 0; k < src.k(); ++k)
            {
939
                float actual_var = p_invstds[k] - p_means[k]*p_means[k];
940
941
942
943
944
                if (averaging_factor == 1)
                    rvar[k] = scale*actual_var;
                else
                    rvar[k] = (1-averaging_factor)*rvar[k] + scale*averaging_factor*actual_var;

945
                p_invstds[k] = 1.0f/std::sqrt(actual_var + eps);
946
947
948
949
950
951
952
953
954
955
            }

            p_src = src.host();
            auto p_dest = dest.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
956
                        *p_dest = (*p_src - p_means[k])*p_invstds[k];
957
958
959
960
961
962
                        *p_dest = (*p_dest)*p_gamma[k] + p_beta[k];
                        ++p_src;
                        ++p_dest;
                    }
                }
            }
963

964
            // now keep track of the running means 
965
966
967
968
969
            running_means.copy_size(means);
            if (averaging_factor != 1)
                running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
            else
                running_means = means;
970
971
        }

972
        void batch_normalize_conv_gradient(
973
            const double eps,
974
975
            const tensor& gradient_input,
            const tensor& means,
976
            const tensor& invstds,
977
978
979
980
981
982
983
984
985
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
        )
        {

            const long num = src.nr()*src.nc();
986
987
988
989
990
991
992
993
994
            DLIB_CASSERT(src.num_samples() > 1);
            DLIB_CASSERT(src.k() == (long)means.size());
            DLIB_CASSERT(src.k() == (long)invstds.size());
            DLIB_CASSERT(src.k() == (long)gamma.size());
            DLIB_CASSERT(src.k() == (long)gamma_grad.size());
            DLIB_CASSERT(src.k() == (long)beta_grad.size());
            DLIB_CASSERT(have_same_dimensions(gradient_input, src));
            DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
            DLIB_CASSERT(eps > 0);
995
996
997
998

            beta_grad = 0;
            gamma_grad = 0;

999
1000
1001
1002
1003
            auto p_grad = gradient_input.host();
            auto p_src = src.host();
            const auto p_gamma = gamma.host();   
            const auto p_gamma_grad = gamma_grad.host();   
            const auto p_beta_grad = beta_grad.host();   
1004
            const auto p_invstds = invstds.host();
1005
1006
            const auto p_means = means.host();

1007
            resizable_tensor dvars, dmeans;
1008
            dvars.copy_size(invstds);
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
            dmeans.copy_size(means);
            dvars = 0;
            dmeans = 0;
            const auto p_dvars = dvars.host();
            const auto p_dmeans = dmeans.host();

            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
1019
                    const float invstd_pow = -0.5*std::pow(p_invstds[k], 3.0f);
1020
1021
                    for (long i = 0; i < num; ++i)
                    {
1022
                        const float x_hat = (*p_src - p_means[k])*p_invstds[k];
1023
1024
1025
1026
1027
                        p_beta_grad[k] += *p_grad;
                        p_gamma_grad[k] += (*p_grad)*x_hat;

                        const float dx = *p_grad * p_gamma[k];

1028
                        p_dvars[k] += dx*(*p_src - p_means[k])*invstd_pow;
1029
1030
1031
1032
1033
1034
1035
1036
1037

                        ++p_grad;
                        ++p_src;
                    }
                }
            }

            p_grad = gradient_input.host();
            p_src = src.host();
1038
            const float invnum = 1.0f/(src.num_samples()*num);
1039
1040
1041
1042
1043
1044
1045
1046
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        const float dx = *p_grad * p_gamma[k];

1047
                        p_dmeans[k] += -dx*p_invstds[k] + p_dvars[k] * -2*(*p_src - p_means[k])*invnum;
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

                        ++p_grad;
                        ++p_src;
                    }
                }
            }
            p_grad = gradient_input.host();
            p_src = src.host();
            auto p_src_grad = src_grad.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        const float dx = *p_grad * p_gamma[k];

1065
                        *p_src_grad += dx*p_invstds[k] + 
1066
1067
                            p_dvars[k]*2*(*p_src - p_means[k])*invnum + 
                            p_dmeans[k]*invnum;
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079


                        ++p_grad;
                        ++p_src;
                        ++p_src_grad;
                    }
                }
            }
        }

    // -----------------------------------------------------------------------------------

1080
1081
1082
        void threshold (
            tensor& data,
            float thresh
1083
1084
        )
        {
1085
1086
1087
            const auto d = data.host();
            for (size_t i = 0; i < data.size(); ++i)
                d[i] = d[i]>thresh ? 1:0;
1088
1089
        }

1090
1091
1092
1093
1094
1095
1096
        void dot (
            const tensor& a,
            const tensor& b,
            tensor& result,
            size_t idx
        )
        {
1097
1098
            DLIB_CASSERT(a.size() == b.size());
            DLIB_CASSERT(idx < result.size());
1099
1100
1101
1102
1103
1104
1105
1106

            const auto aa = a.host();
            const auto bb = b.host();
            auto r = result.host();
            for (size_t i = 0; i < a.size(); ++i)
                r[idx] += aa[i]*bb[i];
        }

1107
    // -----------------------------------------------------------------------------------
1108
1109
1110
1111
1112
1113
1114
1115
    // -----------------------------------------------------------------------------------
    // -----------------------------------------------------------------------------------

        void softmax (
            tensor& dest,
            const tensor& src
        )
        {
1116
            DLIB_CASSERT(have_same_dimensions(dest,src));
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
            const auto d = dest.host();
            const auto s = src.host();

            const long num = src.nr()*src.nc();
            // Note that we subtract out the max values in each channel before applying
            // exp() to avoid numeric overflow in the subsequent computations.  Doing this
            // doesn't change the resulting output, it just makes it more numerically
            // stable.
            for (long n = 0; n < src.num_samples(); ++n)
            {
                auto ss = s + num*src.k()*n;
                auto dd = d + num*src.k()*n;
                for (long i = 0; i < num; ++i)
                {
                    float max_val = -std::numeric_limits<float>::infinity();
                    for (long k = 0; k < src.k(); ++k)
                        max_val = std::max(max_val, ss[k*num]);

                    for (long k = 0; k < src.k(); ++k)
                        dd[k*num] = std::exp(ss[k*num]-max_val);

                    ++ss;
                    ++dd;
                }
            }

            // Now normalize each channel so they sum to 1.
            for (long n = 0; n < src.num_samples(); ++n)
            {
                const auto dd = d + num*src.k()*n;
                for (long r = 0; r < src.nr(); ++r)
                {
                    for (long c = 0; c < src.nc(); ++c)
                    {
                        const auto ddd = dd+r*src.nc()+c;

                        float temp = 0;
                        for (long k = 0; k < src.k(); ++k)
                            temp += ddd[k*num];
                        for (long k = 0; k < src.k(); ++k)
                            ddd[k*num] /= temp;
                    }
                }
            }
1161
1162
1163
1164
1165
1166
1167
1168
        }

        void softmax_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
1169
1170
            DLIB_CASSERT(have_same_dimensions(grad,dest));
            DLIB_CASSERT(have_same_dimensions(grad,gradient_input));
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
            const auto d = dest.host();
            const auto g = grad.host();
            const auto in = gradient_input.host();

            const long num = grad.nr()*grad.nc();

            for (long n = 0; n < grad.num_samples(); ++n)
            {
                const auto d2 = d + num*grad.k()*n;
                const auto g2 = g + num*grad.k()*n;
                const auto in2 = in + num*grad.k()*n;
                for (long r = 0; r < grad.nr(); ++r)
                {
                    for (long c = 0; c < grad.nc(); ++c)
                    {
                        const auto d3 = d2+r*grad.nc()+c;
                        const auto g3 = g2+r*grad.nc()+c;
                        const auto in3 = in2+r*grad.nc()+c;

                        float temp = 0;
                        for (long k = 0; k < grad.k(); ++k)
1192
                            temp += -d3[k*num]*in3[k*num];
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
                        if (is_same_object(gradient_input, grad))
                        {
                            for (long k = 0; k < grad.k(); ++k)
                                g3[k*num] = d3[k*num]*(temp+in3[k*num]);
                        }
                        else
                        {
                            for (long k = 0; k < grad.k(); ++k)
                                g3[k*num] += d3[k*num]*(temp+in3[k*num]);
                        }
1203
1204
1205
                    }
                }
            }
1206
1207
1208
1209
1210
1211
1212
1213
1214
        }

    // ------------------------------------------------------------------------------------

        void sigmoid (
            tensor& dest,
            const tensor& src
        )
        {
1215
1216
1217
1218
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = 1/(1+std::exp(-s[i]));
1219
1220
1221
1222
1223
1224
1225
1226
        }

        void sigmoid_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
1227
1228
1229
            const auto g = grad.host();
            const auto d = dest.host();
            const auto in = gradient_input.host();
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
            if (is_same_object(gradient_input, grad))
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    g[i] = in[i]*d[i]*(1-d[i]);
            }
            else
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    g[i] += in[i]*d[i]*(1-d[i]);
            }
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
        }

    // ------------------------------------------------------------------------------------

        void relu (
            tensor& dest,
            const tensor& src
        )
        {
            dest = lowerbound(mat(src), 0);
        }

        void relu_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
            const float* gi = gradient_input.host();
            const float* in = dest.host();
            float* out = grad.host();
1261
            if (is_same_object(grad, gradient_input))
1262
            {
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
                for (size_t i = 0; i < dest.size(); ++i)
                {
                    if (in[i] > 0)
                        out[i] = gi[i];
                    else
                        out[i] = 0;
                }
            }
            else
            {
                for (size_t i = 0; i < dest.size(); ++i)
                {
                    if (in[i] > 0)
                        out[i] += gi[i];
                }
1278
1279
1280
            }
        }

Davis King's avatar
Davis King committed
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
    // ----------------------------------------------------------------------------------------

        void prelu (
            tensor& dest,
            const tensor& src,
            const tensor& param
        )
        {
            const float p = param.host()[0];
            const float* s = src.host();
            float* d = dest.host();
            for (size_t i = 0; i < dest.size(); ++i)
            {
                if (s[i] > 0)
                    d[i] = s[i];
                else
                    d[i] = p*s[i];
            }
        }

        void prelu_gradient (
            tensor& grad,
            const tensor& src,
            const tensor& gradient_input,
            const tensor& param,
            tensor& params_grad 
        )
        {
1309
            DLIB_CASSERT(is_same_object(grad, gradient_input) == false);
Davis King's avatar
Davis King committed
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
            const float p = param.host()[0];
            const float* gi = gradient_input.host();
            const float* s = src.host();
            float* out = grad.host();
            float pgrad = 0;
            for (size_t i = 0; i < src.size(); ++i)
            {
                if (s[i] > 0)
                {
                    out[i] += gi[i];
                }
                else
                {
                    out[i] += p*gi[i];
                    pgrad += gi[i]*s[i];
                }
            }
            params_grad.host()[0] = pgrad;
        }

1330
1331
1332
1333
1334
1335
1336
    // ------------------------------------------------------------------------------------

        void tanh (
            tensor& dest,
            const tensor& src
        )
        {
Davis King's avatar
Davis King committed
1337
1338
1339
1340
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = std::tanh(s[i]);
1341
1342
1343
1344
1345
1346
1347
1348
        }

        void tanh_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
Davis King's avatar
Davis King committed
1349
1350
1351
            const auto g = grad.host();
            const auto d = dest.host();
            const auto in = gradient_input.host();
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
            if (is_same_object(grad, gradient_input))
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    g[i] = in[i]*(1-d[i]*d[i]);
            }
            else
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    g[i] += in[i]*(1-d[i]*d[i]);
            }
1362
        }
1363

1364
    // ------------------------------------------------------------------------------------
1365
1366
1367
1368
    // ------------------------------------------------------------------------------------
    // ------------------------------------------------------------------------------------

        pooling::pooling (
1369
        ) : window_height(0),window_width(0),stride_y(0),stride_x(0),padding_y(0),padding_x(0),do_max_pooling(true)
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
        {
        }

        void pooling::
        clear(
        )
        {
            window_height = 0;
            window_width = 0;
            stride_y = 0;
            stride_x = 0;
1381
1382
            padding_y = 0;
            padding_x = 0;
1383
1384
1385
1386
1387
1388
1389
        }

        void pooling::
        setup_max_pooling(
            int window_height_,
            int window_width_,
            int stride_y_,
1390
1391
1392
            int stride_x_,
            int padding_y_,
            int padding_x_
1393
1394
        )
        {
1395
1396
1397
1398
1399
1400
            DLIB_CASSERT(window_width_ > 0);
            DLIB_CASSERT(window_height_ > 0);
            DLIB_CASSERT(stride_y_ > 0);
            DLIB_CASSERT(stride_x_ > 0);
            DLIB_CASSERT(0 <= padding_y_ && padding_y_ < window_height_);
            DLIB_CASSERT(0 <= padding_x_ && padding_x_ < window_width_);
1401
1402
1403
1404
1405

            window_height = window_height_;
            window_width = window_width_;
            stride_y = stride_y_;
            stride_x = stride_x_;
1406
1407
            padding_y = padding_y_;
            padding_x = padding_x_;
1408
1409
1410
1411
1412
1413
1414
1415
            do_max_pooling = true;
        }

        void pooling::
        setup_avg_pooling(
            int window_height_,
            int window_width_,
            int stride_y_,
1416
1417
1418
            int stride_x_,
            int padding_y_,
            int padding_x_
1419
1420
        )
        {
1421
1422
1423
1424
1425
1426
            DLIB_CASSERT(window_width_ > 0);
            DLIB_CASSERT(window_height_ > 0);
            DLIB_CASSERT(stride_y_ > 0);
            DLIB_CASSERT(stride_x_ > 0);
            DLIB_CASSERT(0 <= padding_y_ && padding_y_ < window_height_);
            DLIB_CASSERT(0 <= padding_x_ && padding_x_ < window_width_);
1427
1428
1429
1430
1431

            window_height = window_height_;
            window_width = window_width_;
            stride_y = stride_y_;
            stride_x = stride_x_;
1432
1433
            padding_y = padding_y_;
            padding_x = padding_x_;
1434
1435
1436
1437
1438
1439
1440
1441
1442
            do_max_pooling = false;
        }

        void pooling::
        operator() (
            resizable_tensor& dest,
            const tensor& src
        )
        {
1443
1444
1445
1446
1447
1448
            DLIB_CASSERT(window_width > 0);
            DLIB_CASSERT(window_height > 0);
            DLIB_CASSERT(stride_y > 0);
            DLIB_CASSERT(stride_x > 0);
            DLIB_CASSERT(0 <= padding_y && padding_y < window_height);
            DLIB_CASSERT(0 <= padding_x && padding_x < window_width);
1449
1450
1451
1452
            DLIB_CASSERT(window_width  <= src.nc() + 2*padding_x,
                "Pooling windows must be small enough to fit into the padded image.");
            DLIB_CASSERT(window_height <= src.nr() + 2*padding_y,
                "Pooling windows must be small enough to fit into the padded image.");
1453
1454
1455
1456

            dest.set_size(
                 src.num_samples(),
                 src.k(),
1457
1458
                 1+(src.nr()+2*padding_y-window_height)/stride_y,
                 1+(src.nc()+2*padding_x-window_width)/stride_x
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
                );

            if (src.size() == 0)
            {
                dest = 0;
                return;
            }


            auto d = dest.host();
1469
1470
            const long x_offset = window_width/2 - padding_x;
            const long y_offset = window_height/2 - padding_y;
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
            if (does_max_pooling())
            {
                for (long n = 0; n < dest.num_samples(); ++n)
                {
                    for (long k = 0; k < dest.k(); ++k)
                    {
                        auto simg = image_plane(src,n,k);
                        auto dimg = d + (n*dest.k() + k)*dest.nr()*dest.nc();

                        for (long r = 0; r < dest.nr(); ++r)
                        {
                            for (long c = 0; c < dest.nc(); ++c)
                            {
1484
1485
                                auto win = centered_rect(c*stride_x+x_offset,
                                    r*stride_y+y_offset,
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
                                    window_width,
                                    window_height);
                                dimg[r*dest.nc() + c] = max(subm_clipped(simg,win));
                            }
                        }
                    }
                }
            }
            else
            {
                for (long n = 0; n < dest.num_samples(); ++n)
                {
                    for (long k = 0; k < dest.k(); ++k)
                    {
                        auto simg = image_plane(src,n,k);
                        auto dimg = d + (n*dest.k() + k)*dest.nr()*dest.nc();

                        for (long r = 0; r < dest.nr(); ++r)
                        {
                            for (long c = 0; c < dest.nc(); ++c)
                            {
1507
1508
                                auto win = centered_rect(c*stride_x+x_offset,
                                    r*stride_y+y_offset,
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
                                    window_width,
                                    window_height);
                                dimg[r*dest.nc() + c] = mean(subm_clipped(simg,win));
                            }
                        }
                    }
                }
            }

        }

        void pooling::get_gradient(
            const tensor& gradient_input, 
            const tensor& dest,
            const tensor& src,
            tensor& grad 
        )
        {
1527
1528
            DLIB_CASSERT(have_same_dimensions(gradient_input,dest));
            DLIB_CASSERT(have_same_dimensions(src,grad));
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538


            if (src.size() == 0)
            {
                return;
            }


            auto gi = gradient_input.host();
            auto g = grad.host();
1539
1540
            const long x_offset = window_width/2 - padding_x;
            const long y_offset = window_height/2 - padding_y;
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
            if (does_max_pooling())
            {
                for (long n = 0; n < dest.num_samples(); ++n)
                {
                    for (long k = 0; k < dest.k(); ++k)
                    {
                        auto simg = image_plane(src,n,k);
                        auto gimg = g + (n*grad.k() + k)*grad.nr()*grad.nc();
                        auto giimg = gi + (n*dest.k() + k)*dest.nr()*dest.nc();
                        auto imgbox = get_rect(simg);

                        for (long r = 0; r < dest.nr(); ++r)
                        {
                            for (long c = 0; c < dest.nc(); ++c)
                            {
1556
1557
                                auto win = centered_rect(c*stride_x+x_offset,
                                    r*stride_y+y_offset,
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
                                    window_width,
                                    window_height).intersect(imgbox);
                                auto p = max_point(subm(simg,win))+win.tl_corner();
                                gimg[p.y()*grad.nc()+p.x()] += giimg[r*dest.nc()+c];
                            }
                        }
                    }
                }
            }
            else
            {
                for (long n = 0; n < dest.num_samples(); ++n)
                {
                    for (long k = 0; k < dest.k(); ++k)
                    {
                        auto simg = image_plane(src,n,k);
                        auto gimg = g + (n*grad.k() + k)*grad.nr()*grad.nc();
                        auto giimg = gi + (n*dest.k() + k)*dest.nr()*dest.nc();
                        auto imgbox = get_rect(simg);

                        for (long r = 0; r < dest.nr(); ++r)
                        {
                            for (long c = 0; c < dest.nc(); ++c)
                            {
1582
1583
                                auto win = centered_rect(c*stride_x+x_offset,
                                    r*stride_y+y_offset,
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
                                    window_width,
                                    window_height).intersect(imgbox);
                                const float delta = giimg[r*dest.nc()+c]/win.area();
                                for (long y = win.top(); y <= win.bottom(); ++y)
                                {
                                    for (long x = win.left(); x <= win.right(); ++x)
                                    {
                                        gimg[y*grad.nc()+x] += delta;
                                    }
                                }
                            }
                        }
                    }
                }
            }

        }

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
    // ------------------------------------------------------------------------------------
    // ------------------------------------------------------------------------------------
    // ------------------------------------------------------------------------------------

        void img2col(
            matrix<float>& output,
            const tensor& data,
            long n,
            long filter_nr,
            long filter_nc,
            long stride_y,
1613
1614
1615
            long stride_x,
            long padding_y,
            long padding_x
1616
1617
1618
1619
1620
        )
        {
            const auto d = data.host() + data.k()*data.nr()*data.nc()*n;
            const rectangle boundary = get_rect(data);

1621
1622
            const long out_nr = 1+(data.nr()+2*padding_y-filter_nr)/stride_y;
            const long out_nc = 1+(data.nc()+2*padding_x-filter_nc)/stride_x;
1623
1624
1625

            output.set_size(out_nr*out_nc, 
                            data.k()*filter_nr*filter_nc);
1626
            DLIB_CASSERT(output.size() != 0);
1627
1628
1629
1630
            float* t = &output(0,0);

            // now fill in the Toeplitz output matrix for the n-th sample in data.  
            size_t cnt = 0;
1631
1632
1633
            const long max_r = data.nr() + padding_y-(filter_nr-1);
            const long max_c = data.nc() + padding_x-(filter_nc-1);
            for (long r = -padding_y; r < max_r; r+=stride_y)
1634
            {
1635
                for (long c = -padding_x; c < max_c; c+=stride_x)
1636
1637
1638
1639
1640
1641
1642
                {
                    for (long k = 0; k < data.k(); ++k)
                    {
                        for (long y = 0; y < filter_nr; ++y)
                        {
                            for (long x = 0; x < filter_nc; ++x)
                            {
1643
                                DLIB_ASSERT(cnt < output.size());
1644
1645
                                long xx = c+x;
                                long yy = r+y;
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
                                if (boundary.contains(xx,yy))
                                    *t = d[(k*data.nr() + yy)*data.nc() + xx];
                                else
                                    *t = 0;
                                ++t;
                                ++cnt;
                            }
                        }
                    }
                }
            }
        }

        void col2img(
            const matrix<float>& output,
            tensor& data,
            long n,
            long filter_nr,
            long filter_nc,
            long stride_y,
1666
1667
1668
            long stride_x,
            long padding_y,
            long padding_x
1669
1670
1671
1672
1673
        )
        {
            const auto d = data.host() + data.k()*data.nr()*data.nc()*n;
            const rectangle boundary = get_rect(data);

1674
            DLIB_CASSERT(output.size() != 0);
1675
1676
1677
            const float* t = &output(0,0);

            // now fill in the Toeplitz output matrix for the n-th sample in data.  
1678
1679
1680
            const long max_r = data.nr() + padding_y-(filter_nr-1);
            const long max_c = data.nc() + padding_x-(filter_nc-1);
            for (long r = -padding_y; r < max_r; r+=stride_y)
1681
            {
1682
                for (long c = -padding_x; c < max_c; c+=stride_x)
1683
1684
1685
1686
1687
1688
1689
                {
                    for (long k = 0; k < data.k(); ++k)
                    {
                        for (long y = 0; y < filter_nr; ++y)
                        {
                            for (long x = 0; x < filter_nc; ++x)
                            {
1690
1691
                                long xx = c+x;
                                long yy = r+y;
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
                                if (boundary.contains(xx,yy))
                                    d[(k*data.nr() + yy)*data.nc() + xx] += *t;
                                ++t;
                            }
                        }
                    }
                }
            }
        }

        void tensor_conv::operator() (
            resizable_tensor& output,
            const tensor& data,
            const tensor& filters,
            int stride_y,
1707
1708
1709
            int stride_x,
            int padding_y,
            int padding_x
1710
1711
        )
        {
1712
1713
1714
1715
1716
1717
            DLIB_CASSERT(is_same_object(output,data) == false);
            DLIB_CASSERT(is_same_object(output,filters) == false);
            DLIB_CASSERT(filters.k() == data.k());
            DLIB_CASSERT(stride_y > 0 && stride_x > 0);
            DLIB_CASSERT(0 <= padding_y && padding_y < filters.nr());
            DLIB_CASSERT(0 <= padding_x && padding_x < filters.nc());
1718
1719
1720
1721
            DLIB_CASSERT(filters.nr() <= data.nr() + 2*padding_y,
                "Filter windows must be small enough to fit into the padded image.");
            DLIB_CASSERT(filters.nc() <= data.nc() + 2*padding_x,
                "Filter windows must be small enough to fit into the padded image.");
1722
1723
1724

            output.set_size(data.num_samples(),
                            filters.num_samples(),
1725
1726
                            1+(data.nr()+2*padding_y-filters.nr())/stride_y,
                            1+(data.nc()+2*padding_x-filters.nc())/stride_x);
1727
1728
1729
1730

            matrix<float> temp;
            for (long n = 0; n < data.num_samples(); ++n)
            {
1731
                img2col(temp, data, n, filters.nr(), filters.nc(), stride_y, stride_x, padding_y, padding_x);
1732
1733
1734
1735
1736
                output.set_sample(n, mat(filters)*trans(temp));
            }

            last_stride_y = stride_y;
            last_stride_x = stride_x;
1737
1738
            last_padding_y = padding_y;
            last_padding_x = padding_x;
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
        }

    // ------------------------------------------------------------------------------------

        void tensor_conv::
        get_gradient_for_data (
            const tensor& gradient_input, 
            const tensor& filters,
            tensor& data_gradient
        )
        {
            matrix<float> temp;
            for (long n = 0; n < gradient_input.num_samples(); ++n)
            {
                auto gi = mat(gradient_input.host()+gradient_input.k()*gradient_input.nr()*gradient_input.nc()*n,
                              gradient_input.k(),
                              gradient_input.nr()*gradient_input.nc());
                                    

                temp = trans(gi)*mat(filters);
1759
                col2img(temp, data_gradient, n, filters.nr(), filters.nc(), last_stride_y, last_stride_x, last_padding_y, last_padding_x);
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
            }
        }

    // ------------------------------------------------------------------------------------

        void tensor_conv::
        get_gradient_for_filters (
            const tensor& gradient_input, 
            const tensor& data,
            tensor& filters_gradient
        )
        {
            matrix<float> temp;
            for (long n = 0; n < gradient_input.num_samples(); ++n)
            {
                auto gi = mat(gradient_input.host()+gradient_input.k()*gradient_input.nr()*gradient_input.nc()*n,
                              gradient_input.k(),
                              gradient_input.nr()*gradient_input.nc());


1780
                img2col(temp, data, n, filters_gradient.nr(), filters_gradient.nc(), last_stride_y, last_stride_x, last_padding_y, last_padding_x);
1781
1782
1783
1784
1785
1786
                if (n == 0)
                    filters_gradient = gi*temp;
                else
                    filters_gradient += gi*temp;
            }
        }
Fm's avatar
Fm committed
1787
1788
    // ------------------------------------------------------------------------------------
    void copy_tensor(
1789
            tensor& dest,
Fm's avatar
Fm committed
1790
1791
1792
1793
1794
1795
1796
1797
            size_t dest_k_offset,
            const tensor& src,
            size_t src_k_offset,
            size_t count_k
    )
    {
        const size_t dest_sample_size = static_cast<size_t>(dest.nc() * dest.nr() * dest.k());
        const size_t src_sample_size = static_cast<size_t>(src.nc() * src.nr() * src.k());
1798

Fm's avatar
Fm committed
1799
        const size_t block_size = count_k * dest.nc() * dest.nr();
1800

Fm's avatar
Fm committed
1801
1802
1803
1804
        DLIB_CASSERT(dest.num_samples() == src.num_samples() &&
                     dest.nc() == src.nc() && dest.nr() == src.nr(), "All sources should fit into dest tensor size");
        DLIB_CASSERT(dest.k() - dest_k_offset >= count_k, "Not enough space in dest tensor");
        DLIB_CASSERT(src.k() - src_k_offset >= count_k, "Not enough space in src tensor");
1805

Fm's avatar
Fm committed
1806
1807
        float* dest_p = dest.host() + dest_k_offset * dest.nc() * dest.nr();
        const float* src_p = src.host() + src_k_offset * src.nc() * src.nr();
1808

Davis King's avatar
Davis King committed
1809
        for (long i = 0; i < src.num_samples(); ++i)
1810
        {
Fm's avatar
Fm committed
1811
            ::memcpy(dest_p, src_p, block_size * sizeof(float));
1812

Fm's avatar
Fm committed
1813
1814
            dest_p += dest_sample_size;
            src_p  += src_sample_size;
1815
        }
Fm's avatar
Fm committed
1816
1817
    }

1818
1819
1820
    // ------------------------------------------------------------------------------------
    // ------------------------------------------------------------------------------------
    // ------------------------------------------------------------------------------------
1821

1822
1823
1824
1825
1826
1827
1828
    } 
}


#endif // DLIB_DNN_CPU_cPP_