cpu_dlib.cpp 36.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
// Copyright (C) 2015  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CPU_cPP_
#define DLIB_DNN_CPU_cPP_

// This file contains CPU implementations of the GPU based functions in cuda_dlib.h

#include "cpu_dlib.h"

namespace dlib
{
    namespace cpu 
    {

15
16
17
18
19
20
21
22
    // -----------------------------------------------------------------------------------

        void multiply (
            tensor& dest,
            const tensor& src1,
            const tensor& src2
        )
        {
23
24
25
26
27
28
29
30
31
32
33
34
            DLIB_CASSERT(dest.k() == src1.k() && src1.k() == src2.k() &&
                dest.nr() == src1.nr() && src1.nr() == src2.nr() &&
                dest.nc() == src1.nc() && src1.nc() == src2.nc() ,"");
            const long MD = std::max(std::max(dest.num_samples(),src1.num_samples()),src2.num_samples());
            DLIB_CASSERT((dest.num_samples()==1 || dest.num_samples()==MD) &&
                (src1.num_samples()==1 || src1.num_samples()==MD) &&
                (src2.num_samples()==1 || src2.num_samples()==MD) ,"");

            if (dest.size() == 0)
                return;

            const size_t max_size = std::max(std::max(dest.size(),src1.size()),src2.size());
35
36
37
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
            if (dest.size() == src1.size() && src1.size() == src2.size())
            {
                for (size_t i = 0; i < src1.size(); ++i)
                    d[i] = s1[i]*s2[i];
            }
            else if (dest.num_samples() == 1)
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    d[i] = 0;
                for (size_t i = 0; i < max_size; ++i)
                    d[i%dest.size()] += s1[i%src1.size()]*s2[i%src2.size()];
            }
            else
            {
                for (size_t i = 0; i < max_size; ++i)
                    d[i] = s1[i%src1.size()]*s2[i%src2.size()];
            }
55
56
        }

57
58
59
60
61
62
63
64
        void add(
            float beta,
            tensor& dest,
            float alpha,
            const tensor& src
        )
        {
            DLIB_CASSERT(
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
                  (have_same_dimensions(src, dest) ||
                  (src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1) ||
                  (src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
                  (src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc())) &&
                  is_same_object(src,dest) == false , 
                    "\n\t dest.num_samples(): " << dest.num_samples()
                    <<"\n\t dest.k():           " << dest.k()
                    <<"\n\t dest.nr():          " << dest.nr()
                    <<"\n\t dest.nc():          " << dest.nc()
                    <<"\n\t src.num_samples():  " << src.num_samples()
                    <<"\n\t src.k():            " << src.k()
                    <<"\n\t src.nr():           " << src.nr()
                    <<"\n\t src.nc():           " << src.nc()
                    );

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

            if (beta == 0 && alpha == 0)
            {
                dest = 0;
                return;
            }

            auto d = dest.host();
            auto s = src.host();
            for (long n = 0; n < dest.num_samples(); ++n)
            {
                const auto sn = src.num_samples()==1 ? 0:n;
                for (long k = 0; k < dest.k(); ++k)
                {
                    const auto sk = src.k()==1 ? 0:k;
                    for (long r = 0; r < dest.nr(); ++r)
                    {
                        const auto sr = src.nr()==1 ? 0:r;
                        for (long c = 0; c < dest.nc(); ++c)
                        {
                            const auto sc = src.nc()==1 ? 0:c;

                            const auto s_idx = ((sn*src.k() + sk)*src.nr() + sr)*src.nc() + sc;
                            *d = beta*(*d) + alpha*s[s_idx];
                            ++d;
                        }
                    }
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
                }
            }
        }

    // ----------------------------------------------------------------------------------------

        void add (
            tensor& dest,
            const tensor& src1,
            const tensor& src2
        )
        {
            auto d = dest.host();
            auto s1 = src1.host();
            auto s2 = src2.host();

            // Do the simple and fast version if everything has the same dimensions
            if (have_same_dimensions(dest, src1) &&
                have_same_dimensions(dest, src2))
            {
                for (size_t i = 0; i < dest.size(); ++i)
                    d[i] = s1[i] + s2[i];
                return;
            }

            // Otherwise, do the more complex version with bounds checking.
            for (long n = 0; n < dest.num_samples(); ++n)
            {
                for (long k = 0; k < dest.k(); ++k)
                {
                    for (long r = 0; r < dest.nr(); ++r)
                    {
                        for (long c = 0; c < dest.nc(); ++c)
                        {
                            float v1 = 0;
                            float v2 = 0;

                            // if this index is inside src1
                            if (n < src1.num_samples() && 
                                k < src1.k() && 
                                r < src1.nr() && 
                                c < src1.nc() )
                            {
                                const auto s_idx = ((n*src1.k() + k)*src1.nr() + r)*src1.nc() + c;
                                v1 = s1[s_idx];
                            }

                            // if this index is inside src2
                            if (n < src2.num_samples() && 
                                k < src2.k() && 
                                r < src2.nr() && 
                                c < src2.nc() )
                            {
                                const auto s_idx = ((n*src2.k() + k)*src2.nr() + r)*src2.nc() + c;
                                v2 = s2[s_idx];
                            }

                            *d = v1 + v2;
                            ++d;
                        }
                    }
168
169
170
171
172
173
                }
            }
        }

    // ----------------------------------------------------------------------------------------

174
        void assign_bias_gradient (
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
            tensor& grad,
            const tensor& gradient_input
        )
        {
            DLIB_CASSERT(
                  grad.num_samples() == 1 &&
                  gradient_input.k() == grad.k() &&
                  gradient_input.nr() == grad.nr() &&
                  gradient_input.nc() == grad.nc() &&
                  gradient_input.size() > 0,"");

            auto out = grad.host();
            auto in = gradient_input.host();

            for (size_t i = 0; i < grad.size(); ++i)
                out[i] = *in++;

            for (long i = 1; i < gradient_input.num_samples(); ++i)
            {
                for (size_t i = 0; i < grad.size(); ++i)
                    out[i] += *in++;
            }
        }

199
200
201
    // -----------------------------------------------------------------------------------

        void affine_transform(
202
            tensor& dest,
203
204
205
206
207
            const tensor& src,
            const float A,
            const float B
        )
        {
208
            DLIB_CASSERT(dest.size()==src.size(),"");
209
210
211
212
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = A*s[i] + B;
213
214
        }

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        void affine_transform(
            tensor& dest,
            const tensor& src1,
            const tensor& src2,
            const float A,
            const float B,
            const float C
        )
        {
            DLIB_CASSERT(dest.size()==src1.size(),"");
            DLIB_CASSERT(dest.size()==src2.size(),"");
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
            for (size_t i = 0; i < src1.size(); ++i)
                d[i] = A*s1[i] + B*s2[i] + C;
        }

        void affine_transform(
            tensor& dest,
            const tensor& src1,
            const tensor& src2,
            const tensor& src3,
            const float A,
            const float B,
            const float C,
            const float D
        )
        {
            DLIB_CASSERT(dest.size()==src1.size(),"");
            DLIB_CASSERT(dest.size()==src2.size(),"");
            DLIB_CASSERT(dest.size()==src3.size(),"");
            const auto d = dest.host();
            const auto s1 = src1.host();
            const auto s2 = src2.host();
            const auto s3 = src3.host();
            for (size_t i = 0; i < src1.size(); ++i)
                d[i] = A*s1[i] + B*s2[i] + C*s3[i] + D;
        }

255
256
257
    // -----------------------------------------------------------------------------------

        void affine_transform(
258
            tensor& dest,
259
260
261
262
263
            const tensor& src,
            const tensor& A,
            const tensor& B
        )
        {
264
            DLIB_CASSERT(have_same_dimensions(dest,src),"");
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
            DLIB_CASSERT(
                  ((A.num_samples()==1 && B.num_samples()==1) ||
                  (A.num_samples()==src.num_samples() && B.num_samples()==src.num_samples())) &&
                  A.nr()==B.nr() && B.nr()==src.nr() &&
                  A.nc()==B.nc() && B.nc()==src.nc() &&
                  A.k() ==B.k()  && B.k()==src.k(),"");

            auto d = dest.host();
            auto s = src.host();
            const auto a = A.host();
            const auto b = B.host();
            if (A.num_samples() == 1)
            {
                const long num = src.size()/src.num_samples();
                for (size_t i = 0; i < src.num_samples(); ++i)
                {
                    for (long j = 0; j < num; ++j)
                    {
                        *d = a[j]*(*s) + b[j];
                        d++;
                        s++;
                    }
                }
            }
            else
            {
                for (size_t i = 0; i < src.size(); ++i)
                    d[i] = a[i]*s[i] + b[i];
            }
294
295
296
297
        }

    // -----------------------------------------------------------------------------------

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        void batch_normalize_inference (
            resizable_tensor& dest,
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta,
            const tensor& running_means,
            const tensor& running_invstds
        )
        {
            DLIB_CASSERT(
                gamma.num_samples() == 1 && 
                gamma.nr() == src.nr() &&
                gamma.nc() == src.nc() &&
                gamma.k()  == src.k() &&
                have_same_dimensions(gamma, beta) &&
                have_same_dimensions(gamma, running_means) &&
                have_same_dimensions(gamma, running_invstds), 
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nrunning_means.num_samples(): " << running_means.num_samples() << 
                "\nrunning_means.k():   " << running_means.k() << 
                "\nrunning_means.nr():  " << running_means.nr() << 
                "\nrunning_means.nc():  " << running_means.nc() << 
                "\nrunning_invstds.num_samples(): " << running_invstds.num_samples() << 
                "\nrunning_invstds.k():   " << running_invstds.k() << 
                "\nrunning_invstds.nr():  " << running_invstds.nr() << 
                "\nrunning_invstds.nc():  " << running_invstds.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
                "\nsrc.nc():  " << src.nc() 
            );
            dest.copy_size(src);

            auto d = dest.host();
            auto s = src.host();
            auto g = gamma.host();
            auto b = beta.host();
            auto m = running_means.host();
            auto i = running_invstds.host();

            const long num = src.k()*src.nr()*src.nc();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < num; ++k)
                {
                    *d = g[k]*(*s - m[k])*i[k] + b[k];
                    ++d;
                    ++s;
                }
            }
        }

356
357
358
        void batch_normalize (
            resizable_tensor& dest,
            resizable_tensor& means,
359
            resizable_tensor& invstds,
360
361
362
            const double averaging_factor,
            resizable_tensor& running_means,
            resizable_tensor& running_invstds,
363
364
365
366
367
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta 
        )
        {
368
369
370
            DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means),"");
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_invstds,invstds),"");
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
            DLIB_CASSERT(
                src.num_samples() > 1 &&
                gamma.num_samples() == 1 && 
                beta.num_samples() == 1 && 
                gamma.nr() == beta.nr() && beta.nr() == src.nr() &&
                gamma.nc() == beta.nc() && beta.nc() == src.nc() &&
                gamma.k()  == beta.k()  && beta.k() == src.k(), 
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
                "\nsrc.nc():  " << src.nc() 
            );

            dest.copy_size(src);
            means.set_size(1, src.k(), src.nr(), src.nc());
393
            invstds.set_size(1, src.k(), src.nr(), src.nc());
394

395
            // first compute means and invstds
396
            means = 0;
397
398
            invstds = 0;
            const auto p_invstds = invstds.host();
399
400
401
402
403
404
405
406
407
408
            const auto p_means = means.host();
            auto p_src = src.host();
            const long num = src.k()*src.nr()*src.nc();
            // compute means, and sum of squares
            for (long i = 0; i < num; ++i)
            {
                for (long n = 0; n < src.num_samples(); ++n)
                {
                    float val = p_src[n*num+i];
                    p_means[i] += val;
409
                    p_invstds[i] += val*val;
410
411
412
                }
            }
            means /= src.num_samples();
413
            invstds /= src.num_samples();
414
            // copy data back to host
415
            invstds.host(); means.host();
416
417
418
419

            // compute variances 
            for (long i = 0; i < num; ++i)
            {
420
                auto actual_var = p_invstds[i] - p_means[i]*p_means[i];
421
                p_invstds[i] = 1.0f/std::sqrt(actual_var+BATCH_NORM_EPS);
422
423
424
425
426
427
428
429
430
431
            }

            p_src = src.host();
            auto p_dest = dest.host();
            const auto p_gamma = gamma.host();   
            const auto p_beta = beta.host();   
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
432
                    *p_dest = (*p_src - p_means[i])*p_invstds[i];
433
434
435
436
437
                    *p_dest = (*p_dest)*p_gamma[i] + p_beta[i];
                    ++p_src;
                    ++p_dest;
                }
            }
438
439
440
441
442
443
444
445
446
447
448
449
450
451

            // now keep track of the running means and invstds
            running_means.copy_size(means);
            running_invstds.copy_size(invstds);
            if (averaging_factor != 1)
            {
                running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
                running_invstds = (1-averaging_factor)*mat(running_invstds) + averaging_factor*mat(invstds);
            }
            else
            {
                running_means = means;
                running_invstds = invstds;
            }
452
453
        }

454
        void batch_normalize_gradient (
455
456
            const tensor& gradient_input,
            const tensor& means,
457
            const tensor& invstds,
458
459
460
461
462
463
464
465
466
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
        )
        {

            const long num = src.k()*src.nr()*src.nc();
467
            DLIB_CASSERT(src.num_samples() > 1, "");
468
            DLIB_CASSERT(num == means.size(),"");
469
            DLIB_CASSERT(num == invstds.size(),"");
470
471
472
473
474
            DLIB_CASSERT(num == gamma.size(),"");
            DLIB_CASSERT(num == gamma_grad.size(),"");
            DLIB_CASSERT(num == beta_grad.size(),"");
            DLIB_CASSERT(have_same_dimensions(gradient_input, src),"");
            DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad),"");
475
476
477

            beta_grad = 0;
            gamma_grad = 0;
478
479
480
481
482
            auto p_grad = gradient_input.host();
            auto p_src = src.host();
            const auto p_gamma = gamma.host();   
            const auto p_gamma_grad = gamma_grad.host();   
            const auto p_beta_grad = beta_grad.host();   
483
            const auto p_invstds = invstds.host();
484
485
            const auto p_means = means.host();

486
            resizable_tensor dvars, dmeans;
487
            dvars.copy_size(invstds);
488
489
490
491
492
493
494
495
496
497
            dmeans.copy_size(means);
            dvars = 0;
            dmeans = 0;
            const auto p_dvars = dvars.host();
            const auto p_dmeans = dmeans.host();

            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
498
                    const float x_hat = (*p_src - p_means[i])*p_invstds[i];
499
500
501
502
503
                    p_beta_grad[i] += *p_grad;
                    p_gamma_grad[i] += (*p_grad)*x_hat;

                    const float dx = *p_grad * p_gamma[i];

504
                    p_dvars[i] += dx*(*p_src - p_means[i])*-0.5*std::pow(p_invstds[i], 3.0f);
505
506
507
508
509
510

                    ++p_grad;
                    ++p_src;
                }
            }

511
            const float invnum = 1.0f/src.num_samples();
512
513
514
515
516
517
518
519
            p_grad = gradient_input.host();
            p_src = src.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
                    const float dx = *p_grad * p_gamma[i];

520
                    p_dmeans[i] += dx*-p_invstds[i] + p_dvars[i] * -2*(*p_src - p_means[i])*invnum;
521
522
523
524
525
526
527
528
529
530
531
532
533
534

                    ++p_grad;
                    ++p_src;
                }
            }
            p_grad = gradient_input.host();
            p_src = src.host();
            auto p_src_grad = src_grad.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long i = 0; i < num; ++i)
                {
                    const float dx = *p_grad * p_gamma[i];

535
                    *p_src_grad += dx*p_invstds[i] + 
536
537
                        p_dvars[i] *2*(*p_src - p_means[i])*invnum + 
                        p_dmeans[i]*invnum;
538
539
540
541
542
543
544
545
546
547
548


                    ++p_grad;
                    ++p_src;
                    ++p_src_grad;
                }
            }
        }

    // ----------------------------------------------------------------------------------------

549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        void batch_normalize_conv_inference (
            resizable_tensor& dest,
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta,
            const tensor& running_means,
            const tensor& running_invstds
        )
        {
            DLIB_CASSERT(
                gamma.num_samples() == 1 && 
                gamma.nr() == 1 &&
                gamma.nc() == 1 &&
                gamma.k()  == src.k() &&
                have_same_dimensions(gamma, beta) &&
                have_same_dimensions(gamma, running_means) &&
                have_same_dimensions(gamma, running_invstds), 
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nrunning_means.num_samples(): " << running_means.num_samples() << 
                "\nrunning_means.k():   " << running_means.k() << 
                "\nrunning_means.nr():  " << running_means.nr() << 
                "\nrunning_means.nc():  " << running_means.nc() << 
                "\nrunning_invstds.num_samples(): " << running_invstds.num_samples() << 
                "\nrunning_invstds.k():   " << running_invstds.k() << 
                "\nrunning_invstds.nr():  " << running_invstds.nr() << 
                "\nrunning_invstds.nc():  " << running_invstds.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
                "\nsrc.nc():  " << src.nc() 
            );
            dest.copy_size(src);

            auto d = dest.host();
            auto s = src.host();
            auto g = gamma.host();
            auto b = beta.host();
            auto m = running_means.host();
            auto i = running_invstds.host();

            const long num = src.nr()*src.nc();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long j = 0; j < num; ++j)
                    {
                        *d = g[k]*(*s - m[k])*i[k] + b[k];
                        ++d;
                        ++s;
                    }
                }
            }
        }

610
611
612
        void batch_normalize_conv (
            resizable_tensor& dest,
            resizable_tensor& means,
613
            resizable_tensor& invstds,
614
615
616
            const double averaging_factor,
            resizable_tensor& running_means,
            resizable_tensor& running_invstds,
617
618
619
620
621
            const tensor& src,
            const tensor& gamma, 
            const tensor& beta 
        )
        {
622
623
624
            DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means),"");
            DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_invstds,invstds),"");
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
            DLIB_CASSERT(
                src.num_samples() > 1 &&
                gamma.num_samples() == 1 && 
                beta.num_samples() == 1 && 
                gamma.nr() == 1 && 
                beta.nr() == 1 && 
                gamma.nc() == 1 && 
                beta.nc() == 1 && 
                gamma.k()  == beta.k()  && beta.k() == src.k(), 
                "\ngamma.num_samples(): " << gamma.num_samples() << 
                "\ngamma.k():  " << gamma.k() << 
                "\ngamma.nr(): " << gamma.nr() << 
                "\ngamma.nc(): " << gamma.nc() << 
                "\nbeta.num_samples(): " << beta.num_samples() << 
                "\nbeta.k():   " << beta.k() << 
                "\nbeta.nr():  " << beta.nr() << 
                "\nbeta.nc():  " << beta.nc() << 
                "\nsrc.k():   " << src.k() << 
                "\nsrc.nr():  " << src.nr() << 
                "\nsrc.nc():  " << src.nc() 
            );

            dest.copy_size(src);
            means.set_size(1, src.k());
649
            invstds.set_size(1, src.k());
650

651
            // first compute means and invstds
652
            means = 0;
653
654
            invstds = 0;
            const auto p_invstds = invstds.host();
655
656
657
658
659
660
661
662
663
664
665
666
667
            const auto p_means = means.host();
            const auto p_gamma = gamma.host();   
            const auto p_beta = beta.host();   
            auto p_src = src.host();
            const long num = src.nr()*src.nc();
            // compute means, and sum of squares
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        p_means[k] += *p_src;
668
                        p_invstds[k] += (*p_src)*(*p_src);
669
670
671
672
673
                        ++p_src;
                    }
                }
            }
            means /= src.num_samples()*num;
674
            invstds /= src.num_samples()*num;
675
            // copy data back to host
676
            invstds.host(); means.host();
677
678
679
680
681

            p_src = src.host();
            // compute variances 
            for (long k = 0; k < src.k(); ++k)
            {
682
                float actual_var = p_invstds[k] - p_means[k]*p_means[k];
683
                p_invstds[k] = 1.0f/std::sqrt(actual_var + BATCH_NORM_EPS);
684
685
686
687
688
689
690
691
692
693
            }

            p_src = src.host();
            auto p_dest = dest.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
694
                        *p_dest = (*p_src - p_means[k])*p_invstds[k];
695
696
697
698
699
700
                        *p_dest = (*p_dest)*p_gamma[k] + p_beta[k];
                        ++p_src;
                        ++p_dest;
                    }
                }
            }
701
702
703
704
705
706
707
708
709
710
711
712
713
714

            // now keep track of the running means and invstds
            running_means.copy_size(means);
            running_invstds.copy_size(invstds);
            if (averaging_factor != 1)
            {
                running_means = (1-averaging_factor)*mat(running_means) + averaging_factor*mat(means);
                running_invstds = (1-averaging_factor)*mat(running_invstds) + averaging_factor*mat(invstds);
            }
            else
            {
                running_means = means;
                running_invstds = invstds;
            }
715
716
        }

717
        void batch_normalize_conv_gradient(
718
719
            const tensor& gradient_input,
            const tensor& means,
720
            const tensor& invstds,
721
722
723
724
725
726
727
728
729
            const tensor& src,
            const tensor& gamma,
            tensor& src_grad,
            tensor& gamma_grad, 
            tensor& beta_grad 
        )
        {

            const long num = src.nr()*src.nc();
730
            DLIB_CASSERT(src.num_samples() > 1, "");
731
            DLIB_CASSERT(src.k() == means.size(),"");
732
            DLIB_CASSERT(src.k() == invstds.size(),"");
733
734
735
736
737
            DLIB_CASSERT(src.k() == gamma.size(),"");
            DLIB_CASSERT(src.k() == gamma_grad.size(),"");
            DLIB_CASSERT(src.k() == beta_grad.size(),"");
            DLIB_CASSERT(have_same_dimensions(gradient_input, src),"");
            DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad),"");
738
739
740
741

            beta_grad = 0;
            gamma_grad = 0;

742
743
744
745
746
            auto p_grad = gradient_input.host();
            auto p_src = src.host();
            const auto p_gamma = gamma.host();   
            const auto p_gamma_grad = gamma_grad.host();   
            const auto p_beta_grad = beta_grad.host();   
747
            const auto p_invstds = invstds.host();
748
749
            const auto p_means = means.host();

750
            resizable_tensor dvars, dmeans;
751
            dvars.copy_size(invstds);
752
753
754
755
756
757
758
759
760
761
            dmeans.copy_size(means);
            dvars = 0;
            dmeans = 0;
            const auto p_dvars = dvars.host();
            const auto p_dmeans = dmeans.host();

            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
762
                    const float invstd_pow = -0.5*std::pow(p_invstds[k], 3.0f);
763
764
                    for (long i = 0; i < num; ++i)
                    {
765
                        const float x_hat = (*p_src - p_means[k])*p_invstds[k];
766
767
768
769
770
                        p_beta_grad[k] += *p_grad;
                        p_gamma_grad[k] += (*p_grad)*x_hat;

                        const float dx = *p_grad * p_gamma[k];

771
                        p_dvars[k] += dx*(*p_src - p_means[k])*invstd_pow;
772
773
774
775
776
777
778
779
780

                        ++p_grad;
                        ++p_src;
                    }
                }
            }

            p_grad = gradient_input.host();
            p_src = src.host();
781
            const float invnum = 1.0f/(src.num_samples()*num);
782
783
784
785
786
787
788
789
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        const float dx = *p_grad * p_gamma[k];

790
                        p_dmeans[k] += -dx*p_invstds[k] + p_dvars[k] * -2*(*p_src - p_means[k])*invnum;
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807

                        ++p_grad;
                        ++p_src;
                    }
                }
            }
            p_grad = gradient_input.host();
            p_src = src.host();
            auto p_src_grad = src_grad.host();
            for (long n = 0; n < src.num_samples(); ++n)
            {
                for (long k = 0; k < src.k(); ++k)
                {
                    for (long i = 0; i < num; ++i)
                    {
                        const float dx = *p_grad * p_gamma[k];

808
                        *p_src_grad += dx*p_invstds[k] + 
809
810
                            p_dvars[k]*2*(*p_src - p_means[k])*invnum + 
                            p_dmeans[k]*invnum;
811
812
813
814
815
816
817
818
819
820
821
822


                        ++p_grad;
                        ++p_src;
                        ++p_src_grad;
                    }
                }
            }
        }

    // -----------------------------------------------------------------------------------

823
824
825
        void threshold (
            tensor& data,
            float thresh
826
827
        )
        {
828
829
830
            const auto d = data.host();
            for (size_t i = 0; i < data.size(); ++i)
                d[i] = d[i]>thresh ? 1:0;
831
832
833
        }

    // -----------------------------------------------------------------------------------
834
835
836
837
838
839
840
841
    // -----------------------------------------------------------------------------------
    // -----------------------------------------------------------------------------------

        void softmax (
            tensor& dest,
            const tensor& src
        )
        {
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
            DLIB_CASSERT(have_same_dimensions(dest,src),"");
            const auto d = dest.host();
            const auto s = src.host();

            const long num = src.nr()*src.nc();
            // Note that we subtract out the max values in each channel before applying
            // exp() to avoid numeric overflow in the subsequent computations.  Doing this
            // doesn't change the resulting output, it just makes it more numerically
            // stable.
            for (long n = 0; n < src.num_samples(); ++n)
            {
                auto ss = s + num*src.k()*n;
                auto dd = d + num*src.k()*n;
                for (long i = 0; i < num; ++i)
                {
                    float max_val = -std::numeric_limits<float>::infinity();
                    for (long k = 0; k < src.k(); ++k)
                        max_val = std::max(max_val, ss[k*num]);

                    for (long k = 0; k < src.k(); ++k)
                        dd[k*num] = std::exp(ss[k*num]-max_val);

                    ++ss;
                    ++dd;
                }
            }

            // Now normalize each channel so they sum to 1.
            for (long n = 0; n < src.num_samples(); ++n)
            {
                const auto ss = s + num*src.k()*n;
                const auto dd = d + num*src.k()*n;
                for (long r = 0; r < src.nr(); ++r)
                {
                    for (long c = 0; c < src.nc(); ++c)
                    {
                        const auto sss = ss+r*src.nc()+c;
                        const auto ddd = dd+r*src.nc()+c;

                        float temp = 0;
                        for (long k = 0; k < src.k(); ++k)
                            temp += ddd[k*num];
                        for (long k = 0; k < src.k(); ++k)
                            ddd[k*num] /= temp;
                    }
                }
            }
889
890
891
892
893
894
895
896
        }

        void softmax_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            DLIB_CASSERT(have_same_dimensions(grad,dest),"");
            DLIB_CASSERT(have_same_dimensions(grad,gradient_input),"");
            const auto d = dest.host();
            const auto g = grad.host();
            const auto in = gradient_input.host();

            const long num = grad.nr()*grad.nc();

            for (long n = 0; n < grad.num_samples(); ++n)
            {
                const auto d2 = d + num*grad.k()*n;
                const auto g2 = g + num*grad.k()*n;
                const auto in2 = in + num*grad.k()*n;
                for (long r = 0; r < grad.nr(); ++r)
                {
                    for (long c = 0; c < grad.nc(); ++c)
                    {
                        const auto d3 = d2+r*grad.nc()+c;
                        const auto g3 = g2+r*grad.nc()+c;
                        const auto in3 = in2+r*grad.nc()+c;

                        float temp = 0;
                        for (long k = 0; k < grad.k(); ++k)
920
                            temp += -d3[k*num]*in3[k*num];
921
922
923
924
925
                        for (long k = 0; k < grad.k(); ++k)
                            g3[k*num] = d3[k*num]*(temp+in3[k*num]);
                    }
                }
            }
926
927
928
929
930
931
932
933
934
        }

    // ------------------------------------------------------------------------------------

        void sigmoid (
            tensor& dest,
            const tensor& src
        )
        {
935
936
937
938
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = 1/(1+std::exp(-s[i]));
939
940
941
942
943
944
945
946
        }

        void sigmoid_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
947
948
949
950
951
            const auto g = grad.host();
            const auto d = dest.host();
            const auto in = gradient_input.host();
            for (size_t i = 0; i < dest.size(); ++i)
                g[i] = in[i]*d[i]*(1-d[i]);
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
        }

    // ------------------------------------------------------------------------------------

        void relu (
            tensor& dest,
            const tensor& src
        )
        {
            dest = lowerbound(mat(src), 0);
        }

        void relu_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
            const float* gi = gradient_input.host();
            const float* in = dest.host();
            float* out = grad.host();
            for (size_t i = 0; i < dest.size(); ++i)
            {
                if (in[i] > 0)
                    out[i] = gi[i];
                else
                    out[i] = 0;
            }
        }

    // ------------------------------------------------------------------------------------

        void tanh (
            tensor& dest,
            const tensor& src
        )
        {
Davis King's avatar
Davis King committed
989
990
991
992
            const auto d = dest.host();
            const auto s = src.host();
            for (size_t i = 0; i < src.size(); ++i)
                d[i] = std::tanh(s[i]);
993
994
995
996
997
998
999
1000
        }

        void tanh_gradient (
            tensor& grad,
            const tensor& dest,
            const tensor& gradient_input
        )
        {
Davis King's avatar
Davis King committed
1001
1002
1003
1004
1005
            const auto g = grad.host();
            const auto d = dest.host();
            const auto in = gradient_input.host();
            for (size_t i = 0; i < dest.size(); ++i)
                g[i] = in[i]*(1-d[i]*d[i]);
1006
        }
1007

1008
    // ------------------------------------------------------------------------------------
1009

1010
1011
1012
1013
1014
1015
1016
    } 
}


#endif // DLIB_DNN_CPU_cPP_