main.cpp 28.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>

using namespace std;
using namespace dlib;


// ----------------------------------------------------------------------------------------

// Only these computational layers have parameters
17
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
18
19
20
21
22
23

struct layer
{
    string type; // comp, loss, or input
    int idx;

24
25
    matrix<long,4,1> output_tensor_shape; // (N,K,NR,NC)

26
27
28
29
30
31
32
    string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
    std::map<string,double> attributes;
    matrix<double> params;
    long tag_id = -1;   // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
    long skip_id = -1;  // If this isn't -1 then it means this layer draws its inputs from
                        // the most recent layer with tag_id==skip_id rather than its immediate predecessor. 

33
34
35
36
37
38
39
40
41
    double attribute (const string& key) const
    {
        auto i = attributes.find(key);
        if (i != attributes.end())
            return i->second;
        else
            throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
    }

42
43
44
45
46
47
48
49
50
51
52
53
    string caffe_layer_name() const 
    { 
        if (type == "input")
            return "data";
        else
            return detail_name+to_string(idx);
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
54
    const matrix<long,4,1>& input_tensor_shape, 
55
56
57
58
59
60
    const string& xml_filename
);

// ----------------------------------------------------------------------------------------

template <typename iterator>
61
const layer& find_layer (
62
63
64
65
66
    iterator i,
    long tag_id
)
/*!
    requires
67
        - i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
68
69
70
        - i is not an input layer.
    ensures
        - if (tag_id == -1) then
71
            - returns the previous layer (i.e. closer to the input) to layer i.
72
        - else
73
74
            - returns the previous layer (i.e. closer to the input) to layer i with the
              given tag_id.
75
76
77
78
!*/
{
    if (tag_id == -1)
    {
79
        return *(i-1);
80
81
82
83
84
85
86
87
    }
    else
    {
        while(true)
        {
            i--;
            // if we hit the end of the network before we found what we were looking for
            if (i->tag_id == tag_id)
88
                return *i;
89
90
            if (i->type == "input")
                throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
91
92
93
94
95
        }
    }
}

template <typename iterator>
96
97
98
99
100
101
102
103
104
105
106
107
108
const layer& find_input_layer (iterator i) { return find_layer(i, i->skip_id); }

template <typename iterator>
string find_layer_caffe_name (
    iterator i,
    long tag_id
)
{
    return find_layer(i,tag_id).caffe_layer_name();
}

template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_input_layer(i).caffe_layer_name(); }
109
110
111
112
113
114
115
116
117
118
119
120
121
122

// ----------------------------------------------------------------------------------------

template <typename EXP>
void print_as_np_array(std::ostream& out, const matrix_exp<EXP>& m)
{
    out << "np.array([";
    for (auto x : m)
        out << x << ",";
    out << "], dtype='float32')";
}

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
123
void convert_dlib_xml_to_caffe_python_code(
124
125
126
127
128
    const string& xml_filename,
    const long N,
    const long K,
    const long NR,
    const long NC
129
130
)
{
131
132
133
134
    const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
    cout << "Writing model to " << out_filename << endl;
    ofstream fout(out_filename);
    fout.precision(9);
135
136
    const auto layers = parse_dlib_xml({N,K,NR,NC}, xml_filename);

137

Davis King's avatar
Davis King committed
138
139
140
141
    fout << "#\n";
    fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility.     !!!\n";
    fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
    fout << "#\n";
142
143
144
    fout << "import caffe " << endl;
    fout << "from caffe import layers as L, params as P" << endl;
    fout << "import numpy as np" << endl;
145

146
    // dlib nets don't commit to a batch size, so just use 1 as the default
147
    fout << "\n# Input tensor dimensions" << endl;
148
    fout << "input_batch_size = " << N << ";" << endl;
149
150
    if (layers.back().detail_name == "input_rgb_image")
    {
151
152
153
154
155
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
156
157
158
    }
    else if (layers.back().detail_name == "input_rgb_image_sized")
    {
159
160
161
162
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = " << layers.back().attribute("nr") << ";" << endl;
        fout << "input_num_cols = " << layers.back().attribute("nc") << ";" << endl;
        if (NR != layers.back().attribute("nr"))
163
            throw dlib::error("The dlib model requires input tensors with NUM_ROWS=="+to_string((long)layers.back().attribute("nr"))+", but the dtoc command line specified NUM_ROWS=="+to_string(NR));
164
        if (NC != layers.back().attribute("nc"))
165
            throw dlib::error("The dlib model requires input tensors with NUM_COLUMNS=="+to_string((long)layers.back().attribute("nc"))+", but the dtoc command line specified NUM_COLUMNS=="+to_string(NC));
166
167
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
168
169
170
    }
    else if (layers.back().detail_name == "input")
    {
171
172
173
174
175
        fout << "input_num_channels = 1;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 1)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==1, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
176
177
178
179
180
    }
    else
    {
        throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
    }
181
    fout << endl;
Davis King's avatar
Davis King committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
    fout << "# definition and weight files.  You can then use the network by loading it with\n";
    fout << "# this statement: \n";
    fout << "#    net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
    fout << "#\n";
    fout << "def save_as_caffe_model(def_file, weights_file):\n";
    fout << "    with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
    fout << "    net = caffe.Net(def_file, caffe.TEST);\n";
    fout << "    set_network_weights(net);\n";
    fout << "    net.save(weights_file);\n\n";
    fout << "###############################################################################\n";
    fout << "#         EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS             #\n";
    fout << "###############################################################################\n\n\n";


    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that defines the network architecture. 
    // -----------------------------------------------------------------------------------
200

201
202
203
204
    fout << "def make_netspec():" << endl;
    fout << "    # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
    fout << "    # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
    fout << "    n = caffe.NetSpec(); " << endl;
205
    fout << "    n.data,n.label = L.MemoryData(batch_size=input_batch_size, channels=input_num_channels, height=input_num_rows, width=input_num_cols, ntop=2)" << endl;
206
207
208
209
210
211
212
213
214
215
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
216
217
218
219
220
221
222
223
224
            fout << "    n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_filters");
            fout << ", kernel_w=" << i->attribute("nc");
            fout << ", kernel_h=" << i->attribute("nr");
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
225
226
227
        }
        else if (i->detail_name == "relu")
        {
228
229
            fout << "    n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
230
        }
231
232
233
234
235
236
237
238
239
240
241
        else if (i->detail_name == "sig")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
        }
        else if (i->detail_name == "prelu")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
            fout << ", channel_shared=True"; 
            fout << ");\n";
        }
242
243
        else if (i->detail_name == "max_pool")
        {
244
245
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.MAX"; 
246
247
            if (i->attribute("nc")==0)
            {
248
                fout << ", global_pooling=True";
249
250
251
            }
            else
            {
252
253
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
254
255
            }

256
257
258
259
260
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
261
262
263
        }
        else if (i->detail_name == "avg_pool")
        {
264
265
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.AVE"; 
266
267
            if (i->attribute("nc")==0)
            {
268
                fout << ", global_pooling=True";
269
270
271
            }
            else
            {
272
273
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
274
275
276
277
278
279
280
            }
            if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
            {
                throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
                    "network with such pooling layers.");
            }

281
282
283
284
285
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
286
287
288
        }
        else if (i->detail_name == "fc")
        {
289
290
291
292
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=True";
            fout << ");\n";
293
294
295
        }
        else if (i->detail_name == "fc_no_bias")
        {
296
297
298
299
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=False";
            fout << ");\n";
300
        }
301
        else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
302
        {
303
            throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported.  Instead, "
304
305
                "you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
                "Then you can convert that 'test mode' network to caffe.");
306
        }
307
        else if (i->detail_name == "affine_con")
308
        {
309
310
311
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
312
313
314
        }
        else if (i->detail_name == "affine_fc")
        {
315
316
317
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
318
319
320
        }
        else if (i->detail_name == "add_prev")
        {
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            auto in_shape1 = find_input_layer(i).output_tensor_shape;
            auto in_shape2 = find_layer(i,i->attribute("tag")).output_tensor_shape;
            if (in_shape1 != in_shape2)
            {
                // if only the number of channels differs then we will use a dummy layer to
                // pad with zeros.  But otherwise we will throw an error.
                if (in_shape1(0) == in_shape2(0) && 
                    in_shape1(2) == in_shape2(2) && 
                    in_shape1(3) == in_shape2(3))
                {
                    fout << "    n." << i->caffe_layer_name() << "_zeropad = L.DummyData(num=" << in_shape1(0);
                    fout << ", channels="<<std::abs(in_shape1(1)-in_shape2(1));
                    fout << ", height="<<in_shape1(2);
                    fout << ", width="<<in_shape1(3);
                    fout << ");\n";

                    string smaller_layer = find_input_layer_caffe_name(i);
                    string bigger_layer = find_layer_caffe_name(i, i->attribute("tag"));
                    if (in_shape1(1) > in_shape2(1))
                        swap(smaller_layer, bigger_layer);

                    fout << "    n." << i->caffe_layer_name() << "_concat = L.Concat(n." << smaller_layer;
                    fout << ", n." << i->caffe_layer_name() << "_zeropad";
                    fout << ");\n";

                    fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << i->caffe_layer_name() << "_concat";
                    fout << ", n." << bigger_layer;
                    fout << ", operation=P.Eltwise.SUM";
                    fout << ");\n";
                }
                else
                {
                    std::ostringstream sout;
                    sout << "The dlib network contained an add_prev layer (layer idx " << i->idx << ") that adds two previous ";
                    sout << "layers with different output tensor dimensions.  Caffe's equivalent layer, Eltwise, doesn't support ";
                    sout << "adding layers together with different dimensions.  In the special case where the only difference is "; 
                    sout << "in the number of channels, this converter program will add a dummy layer that outputs a tensor full of zeros ";
                    sout << "and concat it appropriately so this will work.  However, this network you are converting has tensor dimensions ";
                    sout << "different in values other than the number of channels.  In particular, here are the two tensor shapes (batch size, channels, rows, cols): ";
                    std::ostringstream sout2;
                    sout2 << wrap_string(sout.str()) << endl;
                    sout2 << trans(in_shape1);
                    sout2 << trans(in_shape2);
                    throw dlib::error(sout2.str());
                }
            }
            else
            {
                fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
                fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
                fout << ", operation=P.Eltwise.SUM";
                fout << ");\n";
            }
374
375
376
377
378
379
        }
        else
        {
            throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
        }
    }
380
    fout << "    return n.to_proto();\n\n" << endl;
381

382

383
384
385
    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that populates all the filter weights.
    // -----------------------------------------------------------------------------------
386

387
388
    fout << "def set_network_weights(net):\n";
    fout << "    # populate network parameters\n";
389
390
391
392
393
394
395
396
397
398
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
399
            const long num_filters = i->attribute("num_filters");
400
401
402
403
            matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
            matrix<double> biases  = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));

            // main filter weights
404
405
406
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
407
408

            // biases
409
410
411
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
412
413
414
415
416
417
418
        }
        else if (i->detail_name == "fc")
        {
            matrix<double> weights = trans(rowm(i->params, range(0,i->params.nr()-2))); 
            matrix<double> biases  = rowm(i->params, i->params.nr()-1); 

            // main filter weights
419
420
421
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
422
423

            // biases
424
425
426
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
427
428
429
430
431
432
        }
        else if (i->detail_name == "fc_no_bias")
        {
            matrix<double> weights = trans(i->params); 

            // main filter weights
433
434
435
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
436
        }
437
        else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
438
        {
439
440
441
442
443
            const long dims = i->params.size()/2;
            matrix<double> gamma = trans(rowm(i->params,range(0,dims-1)));
            matrix<double> beta  = trans(rowm(i->params,range(dims, 2*dims-1)));

            // set gamma weights
444
445
446
            fout << "    p = "; print_as_np_array(fout,gamma); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
447
448

            // set beta weights 
449
450
451
            fout << "    p = "; print_as_np_array(fout,beta); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
452
        }
453
454
455
456
457
458
459
460
461
        else if (i->detail_name == "prelu")
        {
            const double param = i->params(0);

            // main filter weights
            fout << "    tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
            fout << "    tmp.shape = 1;\n";
            fout << "    tmp[0] = "<<param<<";\n";
        }
462
463
464
465
466
467
468
469
    }

}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
470
    if (argc != 6)
471
    {
472
473
474
475
476
477
478
        cout << "To use this program, give it an xml file generated by dlib::net_to_xml() " << endl;
        cout << "and then 4 numbers that indicate the input tensor size.  It will convert " << endl;
        cout << "the xml file into a python file that outputs a caffe model containing the dlib model." << endl;
        cout << "For example, you might run this program like this: " << endl;
        cout << "   ./dtoc lenet.xml 1 1 28 28" << endl;
        cout << "would convert the lenet.xml model into a caffe model with an input tensor of shape(1,1,28,28)" << endl;
        cout << "where the shape values are (num samples in batch, num channels, num rows, num columns)." << endl;
479
480
481
        return 0;
    }

482
483
484
485
486
487
    const long N = sa = argv[2];
    const long K = sa = argv[3];
    const long NR = sa = argv[4];
    const long NC = sa = argv[5];

    convert_dlib_xml_to_caffe_python_code(argv[1], N, K, NR, NC);
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

    return 0;
}
catch(std::exception& e)
{
    cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
    return 1;
}

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

class doc_handler : public document_handler
{
public:
    std::vector<layer> layers;
    bool seen_first_tag = false;

    layer next_layer;
    std::stack<string> current_tag;
    long tag_id = -1;


    virtual void start_document (
    ) 
    { 
        layers.clear(); 
        seen_first_tag = false;
        tag_id = -1;
    }

    virtual void end_document (
    ) { }

    virtual void start_element ( 
        const unsigned long line_number,
        const std::string& name,
        const dlib::attribute_list& atts
    )
    {
        if (!seen_first_tag)
        {
            if (name != "net")
                throw dlib::error("The top level XML tag must be a 'net' tag.");
            seen_first_tag = true;
        }

        if (name == "layer")
        {
            next_layer = layer();
            if (atts["type"] == "skip")
            {
                // Don't make a new layer, just apply the tag id to the previous layer
                if (layers.size() == 0)
                    throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
                layers.back().skip_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else if (atts["type"] == "tag")
            {
                // Don't make a new layer, just remember the tag id so we can apply it on
                // the next layer.
                tag_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else
            {
                next_layer.idx = sa = atts["idx"];
                next_layer.type = atts["type"];
                if (tag_id != -1)
                {
                    next_layer.tag_id = tag_id;
                    tag_id = -1;
                }
            }
        }
        else if (current_tag.size() != 0 && current_tag.top() == "layer")
        {
            next_layer.detail_name = name;
            // copy all the XML tag's attributes into the layer struct
            atts.reset();
            while (atts.move_next())
                next_layer.attributes[atts.element().key()] = sa = atts.element().value();
        }

        current_tag.push(name);
    }

    virtual void end_element ( 
        const unsigned long line_number,
        const std::string& name
    )
    {
        current_tag.pop();
        if (name == "layer" && next_layer.type.size() != 0)
            layers.push_back(next_layer);
    }

    virtual void characters ( 
        const std::string& data
    )
    {
        if (current_tag.size() == 0)
            return;

        if (comp_tags_with_params.count(current_tag.top()) != 0)
        {
            istringstream sin(data);
            sin >> next_layer.params;
        }

    }

    virtual void processing_instruction (
        const unsigned long line_number,
        const std::string& target,
        const std::string& data
    )
    {
    }
};

// ----------------------------------------------------------------------------------------

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
void compute_output_tensor_shapes(const matrix<long,4,1>& input_tensor_shape, std::vector<layer>& layers)
{
    DLIB_CASSERT(layers.back().type == "input");
    layers.back().output_tensor_shape = input_tensor_shape;
    for (auto i = ++layers.rbegin(); i != layers.rend(); ++i)
    {
        const auto input_shape = find_input_layer(i).output_tensor_shape;
        if (i->type == "comp")
        {
            if (i->detail_name == "fc" || i->detail_name == "fc_no_bias")
            {
                long num_outputs = i->attribute("num_outputs");
                i->output_tensor_shape = {input_shape(0), num_outputs, 1, 1};
            }
            else if (i->detail_name == "con")
            {
                long num_filters = i->attribute("num_filters");
                long filter_nc = i->attribute("nc");
                long filter_nr = i->attribute("nr");
                long stride_x = i->attribute("stride_x");
                long stride_y = i->attribute("stride_y");
                long padding_x = i->attribute("padding_x");
                long padding_y = i->attribute("padding_y");
                long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
                long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
                i->output_tensor_shape = {input_shape(0), num_filters, nr, nc};
            }
            else if (i->detail_name == "max_pool" || i->detail_name == "avg_pool")
            {
                long filter_nc = i->attribute("nc");
                long filter_nr = i->attribute("nr");
                long stride_x = i->attribute("stride_x");
                long stride_y = i->attribute("stride_y");
                long padding_x = i->attribute("padding_x");
                long padding_y = i->attribute("padding_y");
                long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
                long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
                i->output_tensor_shape = {input_shape(0), input_shape(1), nr, nc};
            }
            else if (i->detail_name == "add_prev")
            {
                auto aux_shape = find_layer(i, i->attribute("tag")).output_tensor_shape;
                for (long j = 0; j < input_shape.size(); ++j)
                    i->output_tensor_shape(j) = std::max(input_shape(j), aux_shape(j));
            }
            else
            {
                i->output_tensor_shape = input_shape;
            }
        }
        else
        {
            i->output_tensor_shape = input_shape;
        }

    }
}

// ----------------------------------------------------------------------------------------

678
std::vector<layer> parse_dlib_xml(
679
    const matrix<long,4,1>& input_tensor_shape, 
680
681
682
683
684
685
686
687
688
689
690
    const string& xml_filename
)
{
    doc_handler dh;
    parse_xml(xml_filename, dh);
    if (dh.layers.size() == 0)
        throw dlib::error("No layers found in XML file!");

    if (dh.layers.back().type != "input")
        throw dlib::error("The network in the XML file is missing an input layer!");

691
692
    compute_output_tensor_shapes(input_tensor_shape, dh.layers);

693
694
695
696
697
    return dh.layers;
}

// ----------------------------------------------------------------------------------------