main.cpp 22.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>

using namespace std;
using namespace dlib;


// ----------------------------------------------------------------------------------------

// Only these computational layers have parameters
17
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
18
19
20
21
22
23
24
25
26
27
28
29
30

struct layer
{
    string type; // comp, loss, or input
    int idx;

    string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
    std::map<string,double> attributes;
    matrix<double> params;
    long tag_id = -1;   // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
    long skip_id = -1;  // If this isn't -1 then it means this layer draws its inputs from
                        // the most recent layer with tag_id==skip_id rather than its immediate predecessor. 

31
32
33
34
35
36
37
38
39
    double attribute (const string& key) const
    {
        auto i = attributes.find(key);
        if (i != attributes.end())
            return i->second;
        else
            throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
    }

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    string caffe_layer_name() const 
    { 
        if (type == "input")
            return "data";
        else
            return detail_name+to_string(idx);
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
);

// ----------------------------------------------------------------------------------------

template <typename iterator>
string find_layer_caffe_name (
    iterator i,
    long tag_id
)
/*!
    requires
        - i is an iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
        - i is not an input layer.
    ensures
        - if (tag_id == -1) then
            - returns the caffe string name for the previous layer to layer i.
        - else
            - returns the caffe string name for the previous layer to layer i with the given tag_id.
!*/
{
    if (tag_id == -1)
    {
        return (i-1)->caffe_layer_name();
    }
    else
    {
        while(true)
        {
            i--;
            // if we hit the end of the network before we found what we were looking for
            if (i->tag_id == tag_id)
                return i->caffe_layer_name();
85
86
            if (i->type == "input")
                throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        }
    }
}

template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_layer_caffe_name(i, i->skip_id); }

// ----------------------------------------------------------------------------------------

template <typename EXP>
void print_as_np_array(std::ostream& out, const matrix_exp<EXP>& m)
{
    out << "np.array([";
    for (auto x : m)
        out << x << ",";
    out << "], dtype='float32')";
}

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
107
void convert_dlib_xml_to_caffe_python_code(
108
109
110
111
112
    const string& xml_filename,
    const long N,
    const long K,
    const long NR,
    const long NC
113
114
)
{
115
116
117
118
    const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
    cout << "Writing model to " << out_filename << endl;
    ofstream fout(out_filename);
    fout.precision(9);
119
    const auto layers = parse_dlib_xml(xml_filename);
120

Davis King's avatar
Davis King committed
121
122
123
124
    fout << "#\n";
    fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility.     !!!\n";
    fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
    fout << "#\n";
125
126
127
    fout << "import caffe " << endl;
    fout << "from caffe import layers as L, params as P" << endl;
    fout << "import numpy as np" << endl;
128

129
    // dlib nets don't commit to a batch size, so just use 1 as the default
130
    fout << "\n# Input tensor dimensions" << endl;
131
    fout << "input_batch_size = " << N << ";" << endl;
132
133
    if (layers.back().detail_name == "input_rgb_image")
    {
134
135
136
137
138
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
139
140
141
    }
    else if (layers.back().detail_name == "input_rgb_image_sized")
    {
142
143
144
145
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = " << layers.back().attribute("nr") << ";" << endl;
        fout << "input_num_cols = " << layers.back().attribute("nc") << ";" << endl;
        if (NR != layers.back().attribute("nr"))
146
            throw dlib::error("The dlib model requires input tensors with NUM_ROWS=="+to_string((long)layers.back().attribute("nr"))+", but the dtoc command line specified NUM_ROWS=="+to_string(NR));
147
        if (NC != layers.back().attribute("nc"))
148
            throw dlib::error("The dlib model requires input tensors with NUM_COLUMNS=="+to_string((long)layers.back().attribute("nc"))+", but the dtoc command line specified NUM_COLUMNS=="+to_string(NC));
149
150
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
151
152
153
    }
    else if (layers.back().detail_name == "input")
    {
154
155
156
157
158
        fout << "input_num_channels = 1;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 1)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==1, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
159
160
161
162
163
    }
    else
    {
        throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
    }
164
    fout << endl;
Davis King's avatar
Davis King committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
    fout << "# definition and weight files.  You can then use the network by loading it with\n";
    fout << "# this statement: \n";
    fout << "#    net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
    fout << "#\n";
    fout << "def save_as_caffe_model(def_file, weights_file):\n";
    fout << "    with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
    fout << "    net = caffe.Net(def_file, caffe.TEST);\n";
    fout << "    set_network_weights(net);\n";
    fout << "    net.save(weights_file);\n\n";
    fout << "###############################################################################\n";
    fout << "#         EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS             #\n";
    fout << "###############################################################################\n\n\n";


    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that defines the network architecture. 
    // -----------------------------------------------------------------------------------
183

184
185
186
187
    fout << "def make_netspec():" << endl;
    fout << "    # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
    fout << "    # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
    fout << "    n = caffe.NetSpec(); " << endl;
188
    fout << "    n.data,n.label = L.MemoryData(batch_size=input_batch_size, channels=input_num_channels, height=input_num_rows, width=input_num_cols, ntop=2)" << endl;
189
190
191
192
193
194
195
196
197
198
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
199
200
201
202
203
204
205
206
207
            fout << "    n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_filters");
            fout << ", kernel_w=" << i->attribute("nc");
            fout << ", kernel_h=" << i->attribute("nr");
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
208
209
210
        }
        else if (i->detail_name == "relu")
        {
211
212
            fout << "    n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
213
        }
214
215
216
217
218
219
220
221
222
223
224
        else if (i->detail_name == "sig")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
        }
        else if (i->detail_name == "prelu")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
            fout << ", channel_shared=True"; 
            fout << ");\n";
        }
225
226
        else if (i->detail_name == "max_pool")
        {
227
228
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.MAX"; 
229
230
            if (i->attribute("nc")==0)
            {
231
                fout << ", global_pooling=True";
232
233
234
            }
            else
            {
235
236
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
237
238
            }

239
240
241
242
243
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
244
245
246
        }
        else if (i->detail_name == "avg_pool")
        {
247
248
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.AVE"; 
249
250
            if (i->attribute("nc")==0)
            {
251
                fout << ", global_pooling=True";
252
253
254
            }
            else
            {
255
256
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
257
258
259
260
261
262
263
            }
            if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
            {
                throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
                    "network with such pooling layers.");
            }

264
265
266
267
268
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
269
270
271
        }
        else if (i->detail_name == "fc")
        {
272
273
274
275
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=True";
            fout << ");\n";
276
277
278
        }
        else if (i->detail_name == "fc_no_bias")
        {
279
280
281
282
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=False";
            fout << ");\n";
283
        }
284
        else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
285
        {
286
            throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported.  Instead, "
287
288
                "you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
                "Then you can convert that 'test mode' network to caffe.");
289
        }
290
        else if (i->detail_name == "affine_con")
291
        {
292
293
294
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
295
296
297
        }
        else if (i->detail_name == "affine_fc")
        {
298
299
300
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
301
302
303
        }
        else if (i->detail_name == "add_prev")
        {
304
305
306
307
            fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
            fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
            fout << ", operation=P.Eltwise.SUM";
            fout << ");\n";
308
309
310
311
312
313
        }
        else
        {
            throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
        }
    }
314
    fout << "    return n.to_proto();\n\n" << endl;
315

316

317
318
319
    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that populates all the filter weights.
    // -----------------------------------------------------------------------------------
320

321
322
    fout << "def set_network_weights(net):\n";
    fout << "    # populate network parameters\n";
323
324
325
326
327
328
329
330
331
332
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
333
            const long num_filters = i->attribute("num_filters");
334
335
336
337
            matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
            matrix<double> biases  = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));

            // main filter weights
338
339
340
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
341
342

            // biases
343
344
345
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
346
347
348
349
350
351
352
        }
        else if (i->detail_name == "fc")
        {
            matrix<double> weights = trans(rowm(i->params, range(0,i->params.nr()-2))); 
            matrix<double> biases  = rowm(i->params, i->params.nr()-1); 

            // main filter weights
353
354
355
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
356
357

            // biases
358
359
360
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
361
362
363
364
365
366
        }
        else if (i->detail_name == "fc_no_bias")
        {
            matrix<double> weights = trans(i->params); 

            // main filter weights
367
368
369
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
370
        }
371
        else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
372
        {
373
374
375
376
377
            const long dims = i->params.size()/2;
            matrix<double> gamma = trans(rowm(i->params,range(0,dims-1)));
            matrix<double> beta  = trans(rowm(i->params,range(dims, 2*dims-1)));

            // set gamma weights
378
379
380
            fout << "    p = "; print_as_np_array(fout,gamma); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
381
382

            // set beta weights 
383
384
385
            fout << "    p = "; print_as_np_array(fout,beta); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
386
        }
387
388
389
390
391
392
393
394
395
        else if (i->detail_name == "prelu")
        {
            const double param = i->params(0);

            // main filter weights
            fout << "    tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
            fout << "    tmp.shape = 1;\n";
            fout << "    tmp[0] = "<<param<<";\n";
        }
396
397
398
399
400
401
402
403
    }

}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
404
    if (argc != 6)
405
    {
406
407
408
409
410
411
412
        cout << "To use this program, give it an xml file generated by dlib::net_to_xml() " << endl;
        cout << "and then 4 numbers that indicate the input tensor size.  It will convert " << endl;
        cout << "the xml file into a python file that outputs a caffe model containing the dlib model." << endl;
        cout << "For example, you might run this program like this: " << endl;
        cout << "   ./dtoc lenet.xml 1 1 28 28" << endl;
        cout << "would convert the lenet.xml model into a caffe model with an input tensor of shape(1,1,28,28)" << endl;
        cout << "where the shape values are (num samples in batch, num channels, num rows, num columns)." << endl;
413
414
415
        return 0;
    }

416
417
418
419
420
421
    const long N = sa = argv[2];
    const long K = sa = argv[3];
    const long NR = sa = argv[4];
    const long NC = sa = argv[5];

    convert_dlib_xml_to_caffe_python_code(argv[1], N, K, NR, NC);
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    return 0;
}
catch(std::exception& e)
{
    cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
    return 1;
}

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

class doc_handler : public document_handler
{
public:
    std::vector<layer> layers;
    bool seen_first_tag = false;

    layer next_layer;
    std::stack<string> current_tag;
    long tag_id = -1;


    virtual void start_document (
    ) 
    { 
        layers.clear(); 
        seen_first_tag = false;
        tag_id = -1;
    }

    virtual void end_document (
    ) { }

    virtual void start_element ( 
        const unsigned long line_number,
        const std::string& name,
        const dlib::attribute_list& atts
    )
    {
        if (!seen_first_tag)
        {
            if (name != "net")
                throw dlib::error("The top level XML tag must be a 'net' tag.");
            seen_first_tag = true;
        }

        if (name == "layer")
        {
            next_layer = layer();
            if (atts["type"] == "skip")
            {
                // Don't make a new layer, just apply the tag id to the previous layer
                if (layers.size() == 0)
                    throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
                layers.back().skip_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else if (atts["type"] == "tag")
            {
                // Don't make a new layer, just remember the tag id so we can apply it on
                // the next layer.
                tag_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else
            {
                next_layer.idx = sa = atts["idx"];
                next_layer.type = atts["type"];
                if (tag_id != -1)
                {
                    next_layer.tag_id = tag_id;
                    tag_id = -1;
                }
            }
        }
        else if (current_tag.size() != 0 && current_tag.top() == "layer")
        {
            next_layer.detail_name = name;
            // copy all the XML tag's attributes into the layer struct
            atts.reset();
            while (atts.move_next())
                next_layer.attributes[atts.element().key()] = sa = atts.element().value();
        }

        current_tag.push(name);
    }

    virtual void end_element ( 
        const unsigned long line_number,
        const std::string& name
    )
    {
        current_tag.pop();
        if (name == "layer" && next_layer.type.size() != 0)
            layers.push_back(next_layer);
    }

    virtual void characters ( 
        const std::string& data
    )
    {
        if (current_tag.size() == 0)
            return;

        if (comp_tags_with_params.count(current_tag.top()) != 0)
        {
            istringstream sin(data);
            sin >> next_layer.params;
        }

    }

    virtual void processing_instruction (
        const unsigned long line_number,
        const std::string& target,
        const std::string& data
    )
    {
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
)
{
    doc_handler dh;
    parse_xml(xml_filename, dh);
    if (dh.layers.size() == 0)
        throw dlib::error("No layers found in XML file!");

    if (dh.layers.back().type != "input")
        throw dlib::error("The network in the XML file is missing an input layer!");

    return dh.layers;
}

// ----------------------------------------------------------------------------------------