"examples/vscode:/vscode.git/clone" did not exist on "fe6e01ad10c35661061e7d536e92c3a5b9b734e6"
main.cpp 15.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>

using namespace std;
using namespace dlib;


// ----------------------------------------------------------------------------------------

// Only these computational layers have parameters
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "bn_con", "bn_fc", "affine", "prelu"};

struct layer
{
    string type; // comp, loss, or input
    int idx;

    string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
    std::map<string,double> attributes;
    matrix<double> params;
    long tag_id = -1;   // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
    long skip_id = -1;  // If this isn't -1 then it means this layer draws its inputs from
                        // the most recent layer with tag_id==skip_id rather than its immediate predecessor. 

    string caffe_layer_name() const 
    { 
        if (type == "input")
            return "data";
        else
            return detail_name+to_string(idx);
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
);

// ----------------------------------------------------------------------------------------

template <typename iterator>
string find_layer_caffe_name (
    iterator i,
    long tag_id
)
/*!
    requires
        - i is an iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
        - i is not an input layer.
    ensures
        - if (tag_id == -1) then
            - returns the caffe string name for the previous layer to layer i.
        - else
            - returns the caffe string name for the previous layer to layer i with the given tag_id.
!*/
{
    if (tag_id == -1)
    {
        return (i-1)->caffe_layer_name();
    }
    else
    {
        while(true)
        {
            i--;
            // if we hit the end of the network before we found what we were looking for
            if (i->type == "input")
                throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
            if (i->tag_id == tag_id)
                return i->caffe_layer_name();
        }
    }
}

template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_layer_caffe_name(i, i->skip_id); }

// ----------------------------------------------------------------------------------------

template <typename EXP>
void print_as_np_array(std::ostream& out, const matrix_exp<EXP>& m)
{
    out << "np.array([";
    for (auto x : m)
        out << x << ",";
    out << "], dtype='float32')";
}

// ----------------------------------------------------------------------------------------

void convert_dlib_xml_to_cafffe_python_code(
    const string& xml_filename
)
{
    auto layers = parse_dlib_xml(xml_filename);

    cout << "import caffe " << endl;
    cout << "from caffe import layers as L, params as P" << endl;
    cout << "import numpy as np" << endl;

    // dlib nets don't commit to a batch size, so just use 32 as the default
    cout << "batch_size = 32;" << endl;
    if (layers.back().detail_name == "input_rgb_image")
    {
        cout << "input_nr = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
        cout << "input_nc = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
        cout << "input_k = 3;" << endl;
    }
    else if (layers.back().detail_name == "input_rgb_image_sized")
    {
        cout << "input_nr = " << layers.back().attributes["nr"] << ";" << endl;
        cout << "input_nc = " << layers.back().attributes["nc"] << ";" << endl;
        cout << "input_k = 3;" << endl;
    }
    else if (layers.back().detail_name == "input")
    {
        cout << "input_nr = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
        cout << "input_nc = 150; #WARNING, the source dlib network didn't commit to a specific input size, so we put 150 here as a default." << endl;
        cout << "input_k = 1;" << endl;
    }
    else
    {
        throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
    }

    cout << "def make_netspec():" << endl;
    cout << "    n = caffe.NetSpec(); " << endl;
    cout << "    n.data,n.label = L.MemoryData(batch_size=batch_size, channels=input_k, height=input_nr, width=input_nc, ntop=2)" << endl;
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
            cout << ", num_output=" << i->attributes["num_filters"];
            cout << ", kernel_w=" << i->attributes["nc"];
            cout << ", kernel_h=" << i->attributes["nr"];
            cout << ", stride_w=" << i->attributes["stride_x"];
            cout << ", stride_h=" << i->attributes["stride_y"];
            cout << ", pad_w=" << i->attributes["padding_x"];
            cout << ", pad_h=" << i->attributes["padding_y"];
            cout << ");\n";
        }
        else if (i->detail_name == "relu")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
            cout << ");\n";
        }
        else if (i->detail_name == "max_pool")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            cout << ", pool=P.Pooling.MAX"; 
            cout << ", kernel_w=" << i->attributes["nc"];
            cout << ", kernel_h=" << i->attributes["nr"];
            cout << ", stride_w=" << i->attributes["stride_x"];
            cout << ", stride_h=" << i->attributes["stride_y"];
            cout << ", pad_w=" << i->attributes["padding_x"];
            cout << ", pad_h=" << i->attributes["padding_y"];
            cout << ");\n";
        }
        else if (i->detail_name == "avg_pool")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            cout << ", pool=P.Pooling.MAX"; 
            cout << ", kernel_w=" << i->attributes["nc"];
            cout << ", kernel_h=" << i->attributes["nr"];
            cout << ", stride_w=" << i->attributes["stride_x"];
            cout << ", stride_h=" << i->attributes["stride_y"];
            cout << ", pad_w=" << i->attributes["padding_x"];
            cout << ", pad_h=" << i->attributes["padding_y"];
            cout << ");\n";
        }
        else if (i->detail_name == "fc")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            cout << ", num_output=" << i->attributes["num_outputs"];
            cout << ", bias_term=True";
            cout << ");\n";
        }
        else if (i->detail_name == "fc_no_bias")
        {
            cout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            cout << ", num_output=" << i->attributes["num_outputs"];
            cout << ", bias_term=False";
            cout << ");\n";
        }
        else if (i->detail_name == "bn_con")
        {
            // TODO
        }
        else if (i->detail_name == "bn_fc")
        {
            // TODO
        }
        else if (i->detail_name == "add_prev")
        {
            // TODO
        }
        else
        {
            throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
        }
    }
    cout << "    return n.to_proto();\n\n" << endl;

    cout << "def save_as_caffe_model(def_file, weights_file):\n";
    cout << "    with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
    cout << "    net = caffe.Net(def_file, caffe.TEST);\n";
    cout << "    set_network_weights(net);\n";
    cout << "    net.save(weights_file);\n\n";



    cout << "def set_network_weights(net):\n";
    cout << "    # populate network parameters\n";
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
            const long num_filters = i->attributes["num_filters"];
            matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
            matrix<double> biases  = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));

            // main filter weights
            cout << "    p = "; print_as_np_array(cout,weights); cout << ";\n";
            cout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            cout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";

            // biases
            cout << "    p = "; print_as_np_array(cout,biases); cout << ";\n";
            cout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            cout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
        }
        else if (i->detail_name == "fc")
        {
            matrix<double> weights = trans(rowm(i->params, range(0,i->params.nr()-2))); 
            matrix<double> biases  = rowm(i->params, i->params.nr()-1); 

            // main filter weights
            cout << "    p = "; print_as_np_array(cout,weights); cout << ";\n";
            cout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            cout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";

            // biases
            cout << "    p = "; print_as_np_array(cout,biases); cout << ";\n";
            cout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            cout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
        }
        else if (i->detail_name == "fc_no_bias")
        {
            matrix<double> weights = trans(i->params); 

            // main filter weights
            cout << "    p = "; print_as_np_array(cout,weights); cout << ";\n";
            cout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            cout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
        }
        else if (i->detail_name == "bn_con")
        {
            // TODO
        }
        else if (i->detail_name == "bn_fc")
        {
            // TODO
        }
    }

}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
    // TODO, write out to multiple files or just process one file at a time.  
    for (int i = 1; i < argc; ++i)
        convert_dlib_xml_to_cafffe_python_code(argv[i]);

    return 0;
}
catch(std::exception& e)
{
    cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
    return 1;
}

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

class doc_handler : public document_handler
{
public:
    std::vector<layer> layers;
    bool seen_first_tag = false;

    layer next_layer;
    std::stack<string> current_tag;
    long tag_id = -1;


    virtual void start_document (
    ) 
    { 
        layers.clear(); 
        seen_first_tag = false;
        tag_id = -1;
    }

    virtual void end_document (
    ) { }

    virtual void start_element ( 
        const unsigned long line_number,
        const std::string& name,
        const dlib::attribute_list& atts
    )
    {
        if (!seen_first_tag)
        {
            if (name != "net")
                throw dlib::error("The top level XML tag must be a 'net' tag.");
            seen_first_tag = true;
        }

        if (name == "layer")
        {
            next_layer = layer();
            if (atts["type"] == "skip")
            {
                // Don't make a new layer, just apply the tag id to the previous layer
                if (layers.size() == 0)
                    throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
                layers.back().skip_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else if (atts["type"] == "tag")
            {
                // Don't make a new layer, just remember the tag id so we can apply it on
                // the next layer.
                tag_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else
            {
                next_layer.idx = sa = atts["idx"];
                next_layer.type = atts["type"];
                if (tag_id != -1)
                {
                    next_layer.tag_id = tag_id;
                    tag_id = -1;
                }
            }
        }
        else if (current_tag.size() != 0 && current_tag.top() == "layer")
        {
            next_layer.detail_name = name;
            // copy all the XML tag's attributes into the layer struct
            atts.reset();
            while (atts.move_next())
                next_layer.attributes[atts.element().key()] = sa = atts.element().value();
        }

        current_tag.push(name);
    }

    virtual void end_element ( 
        const unsigned long line_number,
        const std::string& name
    )
    {
        current_tag.pop();
        if (name == "layer" && next_layer.type.size() != 0)
            layers.push_back(next_layer);
    }

    virtual void characters ( 
        const std::string& data
    )
    {
        if (current_tag.size() == 0)
            return;

        if (comp_tags_with_params.count(current_tag.top()) != 0)
        {
            istringstream sin(data);
            sin >> next_layer.params;
        }

    }

    virtual void processing_instruction (
        const unsigned long line_number,
        const std::string& target,
        const std::string& data
    )
    {
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
)
{
    doc_handler dh;
    parse_xml(xml_filename, dh);
    if (dh.layers.size() == 0)
        throw dlib::error("No layers found in XML file!");

    if (dh.layers.back().type != "input")
        throw dlib::error("The network in the XML file is missing an input layer!");

    return dh.layers;
}

// ----------------------------------------------------------------------------------------