main.cpp 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>

using namespace std;
using namespace dlib;


// ----------------------------------------------------------------------------------------

// Only these computational layers have parameters
17
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
18
19
20
21
22
23
24
25
26
27
28
29
30

struct layer
{
    string type; // comp, loss, or input
    int idx;

    string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
    std::map<string,double> attributes;
    matrix<double> params;
    long tag_id = -1;   // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
    long skip_id = -1;  // If this isn't -1 then it means this layer draws its inputs from
                        // the most recent layer with tag_id==skip_id rather than its immediate predecessor. 

31
32
33
34
35
36
37
38
39
    double attribute (const string& key) const
    {
        auto i = attributes.find(key);
        if (i != attributes.end())
            return i->second;
        else
            throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
    }

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    string caffe_layer_name() const 
    { 
        if (type == "input")
            return "data";
        else
            return detail_name+to_string(idx);
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
);

// ----------------------------------------------------------------------------------------

template <typename iterator>
string find_layer_caffe_name (
    iterator i,
    long tag_id
)
/*!
    requires
        - i is an iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
        - i is not an input layer.
    ensures
        - if (tag_id == -1) then
            - returns the caffe string name for the previous layer to layer i.
        - else
            - returns the caffe string name for the previous layer to layer i with the given tag_id.
!*/
{
    if (tag_id == -1)
    {
        return (i-1)->caffe_layer_name();
    }
    else
    {
        while(true)
        {
            i--;
            // if we hit the end of the network before we found what we were looking for
            if (i->tag_id == tag_id)
                return i->caffe_layer_name();
85
86
            if (i->type == "input")
                throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        }
    }
}

template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_layer_caffe_name(i, i->skip_id); }

// ----------------------------------------------------------------------------------------

template <typename EXP>
void print_as_np_array(std::ostream& out, const matrix_exp<EXP>& m)
{
    out << "np.array([";
    for (auto x : m)
        out << x << ",";
    out << "], dtype='float32')";
}

// ----------------------------------------------------------------------------------------

Davis King's avatar
Davis King committed
107
void convert_dlib_xml_to_caffe_python_code(
108
109
110
    const string& xml_filename
)
{
111
112
113
114
    const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
    cout << "Writing model to " << out_filename << endl;
    ofstream fout(out_filename);
    fout.precision(9);
115
    const auto layers = parse_dlib_xml(xml_filename);
116

Davis King's avatar
Davis King committed
117
118
119
120
    fout << "#\n";
    fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility.     !!!\n";
    fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
    fout << "#\n";
121
122
123
    fout << "import caffe " << endl;
    fout << "from caffe import layers as L, params as P" << endl;
    fout << "import numpy as np" << endl;
124

125
    // dlib nets don't commit to a batch size, so just use 1 as the default
126
127
    fout << "\n# Input tensor dimensions" << endl;
    fout << "batch_size = 1;" << endl;
128
129
    if (layers.back().detail_name == "input_rgb_image")
    {
130
        cout << "WARNING: The source dlib network didn't commit to a specific input tensor size, we are using a default size of 28x28x1 which is appropriate for MNIST input.  But if you are using different inputs you will need to edit the auto-generated python script to tell it your input size." << endl;
Davis King's avatar
Davis King committed
131
132
        fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default.  It might not be the right value." << endl;
        fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default.  It might not be the right value." << endl;
133
        fout << "input_k = 3;" << endl;
134
135
136
    }
    else if (layers.back().detail_name == "input_rgb_image_sized")
    {
137
138
139
        fout << "input_nr = " << layers.back().attribute("nr") << ";" << endl;
        fout << "input_nc = " << layers.back().attribute("nc") << ";" << endl;
        fout << "input_k = 3;" << endl;
140
141
142
    }
    else if (layers.back().detail_name == "input")
    {
143
        cout << "WARNING: The source dlib network didn't commit to a specific input tensor size, we are using a default size of 28x28x1 which is appropriate for MNIST input.  But if you are using different inputs you will need to edit the auto-generated python script to tell it your input size." << endl;
Davis King's avatar
Davis King committed
144
145
        fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default.  It might not be the right value." << endl;
        fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default.  It might not be the right value." << endl;
146
        fout << "input_k = 1;" << endl;
147
148
149
150
151
    }
    else
    {
        throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
    }
152
    fout << endl;
Davis King's avatar
Davis King committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
    fout << "# definition and weight files.  You can then use the network by loading it with\n";
    fout << "# this statement: \n";
    fout << "#    net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
    fout << "#\n";
    fout << "def save_as_caffe_model(def_file, weights_file):\n";
    fout << "    with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
    fout << "    net = caffe.Net(def_file, caffe.TEST);\n";
    fout << "    set_network_weights(net);\n";
    fout << "    net.save(weights_file);\n\n";
    fout << "###############################################################################\n";
    fout << "#         EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS             #\n";
    fout << "###############################################################################\n\n\n";


    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that defines the network architecture. 
    // -----------------------------------------------------------------------------------
171

172
173
174
175
176
    fout << "def make_netspec():" << endl;
    fout << "    # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
    fout << "    # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
    fout << "    n = caffe.NetSpec(); " << endl;
    fout << "    n.data,n.label = L.MemoryData(batch_size=batch_size, channels=input_k, height=input_nr, width=input_nc, ntop=2)" << endl;
177
178
179
180
181
182
183
184
185
186
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
187
188
189
190
191
192
193
194
195
            fout << "    n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_filters");
            fout << ", kernel_w=" << i->attribute("nc");
            fout << ", kernel_h=" << i->attribute("nr");
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
196
197
198
        }
        else if (i->detail_name == "relu")
        {
199
200
            fout << "    n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
201
        }
202
203
204
205
206
207
208
209
210
211
212
        else if (i->detail_name == "sig")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
        }
        else if (i->detail_name == "prelu")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
            fout << ", channel_shared=True"; 
            fout << ");\n";
        }
213
214
        else if (i->detail_name == "max_pool")
        {
215
216
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.MAX"; 
217
218
            if (i->attribute("nc")==0)
            {
219
                fout << ", global_pooling=True";
220
221
222
            }
            else
            {
223
224
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
225
226
            }

227
228
229
230
231
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
232
233
234
        }
        else if (i->detail_name == "avg_pool")
        {
235
236
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.AVE"; 
237
238
            if (i->attribute("nc")==0)
            {
239
                fout << ", global_pooling=True";
240
241
242
            }
            else
            {
243
244
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
245
246
247
248
249
250
251
            }
            if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
            {
                throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
                    "network with such pooling layers.");
            }

252
253
254
255
256
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
257
258
259
        }
        else if (i->detail_name == "fc")
        {
260
261
262
263
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=True";
            fout << ");\n";
264
265
266
        }
        else if (i->detail_name == "fc_no_bias")
        {
267
268
269
270
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=False";
            fout << ");\n";
271
        }
272
        else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
273
        {
274
            throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported.  Instead, "
275
276
                "you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
                "Then you can convert that 'test mode' network to caffe.");
277
        }
278
        else if (i->detail_name == "affine_con")
279
        {
280
281
282
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
283
284
285
        }
        else if (i->detail_name == "affine_fc")
        {
286
287
288
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
289
290
291
        }
        else if (i->detail_name == "add_prev")
        {
292
293
294
295
            fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
            fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
            fout << ", operation=P.Eltwise.SUM";
            fout << ");\n";
296
297
298
299
300
301
        }
        else
        {
            throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
        }
    }
302
    fout << "    return n.to_proto();\n\n" << endl;
303

304

305
306
307
    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that populates all the filter weights.
    // -----------------------------------------------------------------------------------
308

309
310
    fout << "def set_network_weights(net):\n";
    fout << "    # populate network parameters\n";
311
312
313
314
315
316
317
318
319
320
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
321
            const long num_filters = i->attribute("num_filters");
322
323
324
325
            matrix<double> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
            matrix<double> biases  = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));

            // main filter weights
326
327
328
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
329
330

            // biases
331
332
333
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
334
335
336
337
338
339
340
        }
        else if (i->detail_name == "fc")
        {
            matrix<double> weights = trans(rowm(i->params, range(0,i->params.nr()-2))); 
            matrix<double> biases  = rowm(i->params, i->params.nr()-1); 

            // main filter weights
341
342
343
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
344
345

            // biases
346
347
348
            fout << "    p = "; print_as_np_array(fout,biases); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
349
350
351
352
353
354
        }
        else if (i->detail_name == "fc_no_bias")
        {
            matrix<double> weights = trans(i->params); 

            // main filter weights
355
356
357
            fout << "    p = "; print_as_np_array(fout,weights); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
358
        }
359
        else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
360
        {
361
362
363
364
365
            const long dims = i->params.size()/2;
            matrix<double> gamma = trans(rowm(i->params,range(0,dims-1)));
            matrix<double> beta  = trans(rowm(i->params,range(dims, 2*dims-1)));

            // set gamma weights
366
367
368
            fout << "    p = "; print_as_np_array(fout,gamma); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
369
370

            // set beta weights 
371
372
373
            fout << "    p = "; print_as_np_array(fout,beta); fout << ";\n";
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
374
        }
375
376
377
378
379
380
381
382
383
        else if (i->detail_name == "prelu")
        {
            const double param = i->params(0);

            // main filter weights
            fout << "    tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
            fout << "    tmp.shape = 1;\n";
            fout << "    tmp[0] = "<<param<<";\n";
        }
384
385
386
387
388
389
390
391
    }

}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
392
393
394
395
396
397
398
    if (argc == 1)
    {
        cout << "Give this program an xml file generated by dlib::net_to_xml() and it will" << endl;
        cout << "convert it into a python file that outputs a caffe model containing the dlib model." << endl;
        return 0;
    }

399
    for (int i = 1; i < argc; ++i)
Davis King's avatar
Davis King committed
400
        convert_dlib_xml_to_caffe_python_code(argv[i]);
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    return 0;
}
catch(std::exception& e)
{
    cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
    return 1;
}

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

class doc_handler : public document_handler
{
public:
    std::vector<layer> layers;
    bool seen_first_tag = false;

    layer next_layer;
    std::stack<string> current_tag;
    long tag_id = -1;


    virtual void start_document (
    ) 
    { 
        layers.clear(); 
        seen_first_tag = false;
        tag_id = -1;
    }

    virtual void end_document (
    ) { }

    virtual void start_element ( 
        const unsigned long line_number,
        const std::string& name,
        const dlib::attribute_list& atts
    )
    {
        if (!seen_first_tag)
        {
            if (name != "net")
                throw dlib::error("The top level XML tag must be a 'net' tag.");
            seen_first_tag = true;
        }

        if (name == "layer")
        {
            next_layer = layer();
            if (atts["type"] == "skip")
            {
                // Don't make a new layer, just apply the tag id to the previous layer
                if (layers.size() == 0)
                    throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
                layers.back().skip_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else if (atts["type"] == "tag")
            {
                // Don't make a new layer, just remember the tag id so we can apply it on
                // the next layer.
                tag_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else
            {
                next_layer.idx = sa = atts["idx"];
                next_layer.type = atts["type"];
                if (tag_id != -1)
                {
                    next_layer.tag_id = tag_id;
                    tag_id = -1;
                }
            }
        }
        else if (current_tag.size() != 0 && current_tag.top() == "layer")
        {
            next_layer.detail_name = name;
            // copy all the XML tag's attributes into the layer struct
            atts.reset();
            while (atts.move_next())
                next_layer.attributes[atts.element().key()] = sa = atts.element().value();
        }

        current_tag.push(name);
    }

    virtual void end_element ( 
        const unsigned long line_number,
        const std::string& name
    )
    {
        current_tag.pop();
        if (name == "layer" && next_layer.type.size() != 0)
            layers.push_back(next_layer);
    }

    virtual void characters ( 
        const std::string& data
    )
    {
        if (current_tag.size() == 0)
            return;

        if (comp_tags_with_params.count(current_tag.top()) != 0)
        {
            istringstream sin(data);
            sin >> next_layer.params;
        }

    }

    virtual void processing_instruction (
        const unsigned long line_number,
        const std::string& target,
        const std::string& data
    )
    {
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const string& xml_filename
)
{
    doc_handler dh;
    parse_xml(xml_filename, dh);
    if (dh.layers.size() == 0)
        throw dlib::error("No layers found in XML file!");

    if (dh.layers.back().type != "input")
        throw dlib::error("The network in the XML file is missing an input layer!");

    return dh.layers;
}

// ----------------------------------------------------------------------------------------