#include #include #include #include #include #include #include using namespace std; using namespace dlib; // ---------------------------------------------------------------------------------------- // Only these computational layers have parameters const std::set comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"}; struct layer { string type; // comp, loss, or input int idx; string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image. std::map attributes; matrix params; long tag_id = -1; // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2 long skip_id = -1; // If this isn't -1 then it means this layer draws its inputs from // the most recent layer with tag_id==skip_id rather than its immediate predecessor. double attribute (const string& key) const { auto i = attributes.find(key); if (i != attributes.end()) return i->second; else throw dlib::error("Layer doesn't have the requested attribute '" + key + "'."); } string caffe_layer_name() const { if (type == "input") return "data"; else return detail_name+to_string(idx); } }; // ---------------------------------------------------------------------------------------- std::vector parse_dlib_xml( const string& xml_filename ); // ---------------------------------------------------------------------------------------- template string find_layer_caffe_name ( iterator i, long tag_id ) /*! requires - i is an iterator pointing to a layer in the list of layers produced by parse_dlib_xml(). - i is not an input layer. ensures - if (tag_id == -1) then - returns the caffe string name for the previous layer to layer i. - else - returns the caffe string name for the previous layer to layer i with the given tag_id. !*/ { if (tag_id == -1) { return (i-1)->caffe_layer_name(); } else { while(true) { i--; // if we hit the end of the network before we found what we were looking for if (i->tag_id == tag_id) return i->caffe_layer_name(); if (i->type == "input") throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer."); } } } template string find_input_layer_caffe_name (iterator i) { return find_layer_caffe_name(i, i->skip_id); } // ---------------------------------------------------------------------------------------- template void print_as_np_array(std::ostream& out, const matrix_exp& m) { out << "np.array(["; for (auto x : m) out << x << ","; out << "], dtype='float32')"; } // ---------------------------------------------------------------------------------------- void convert_dlib_xml_to_caffe_python_code( const string& xml_filename ) { const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py"; cout << "Writing model to " << out_filename << endl; ofstream fout(out_filename); fout.precision(9); const auto layers = parse_dlib_xml(xml_filename); fout << "#\n"; fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility. !!!\n"; fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n"; fout << "#\n"; fout << "import caffe " << endl; fout << "from caffe import layers as L, params as P" << endl; fout << "import numpy as np" << endl; // dlib nets don't commit to a batch size, so just use 1 as the default fout << "\n# Input tensor dimensions" << endl; fout << "batch_size = 1;" << endl; if (layers.back().detail_name == "input_rgb_image") { cout << "WARNING: The source dlib network didn't commit to a specific input tensor size, we are using a default size of 28x28x1 which is appropriate for MNIST input. But if you are using different inputs you will need to edit the auto-generated python script to tell it your input size." << endl; fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default. It might not be the right value." << endl; fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default. It might not be the right value." << endl; fout << "input_k = 3;" << endl; } else if (layers.back().detail_name == "input_rgb_image_sized") { fout << "input_nr = " << layers.back().attribute("nr") << ";" << endl; fout << "input_nc = " << layers.back().attribute("nc") << ";" << endl; fout << "input_k = 3;" << endl; } else if (layers.back().detail_name == "input") { cout << "WARNING: The source dlib network didn't commit to a specific input tensor size, we are using a default size of 28x28x1 which is appropriate for MNIST input. But if you are using different inputs you will need to edit the auto-generated python script to tell it your input size." << endl; fout << "input_nr = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default. It might not be the right value." << endl; fout << "input_nc = 28; #WARNING, the source dlib network didn't commit to a specific input size, so we put 28 here as a default. It might not be the right value." << endl; fout << "input_k = 1;" << endl; } else { throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe."); } fout << endl; fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n"; fout << "# definition and weight files. You can then use the network by loading it with\n"; fout << "# this statement: \n"; fout << "# net = caffe.Net(def_file, weights_file, caffe.TEST);\n"; fout << "#\n"; fout << "def save_as_caffe_model(def_file, weights_file):\n"; fout << " with open(def_file, 'w') as f: f.write(str(make_netspec()));\n"; fout << " net = caffe.Net(def_file, caffe.TEST);\n"; fout << " set_network_weights(net);\n"; fout << " net.save(weights_file);\n\n"; fout << "###############################################################################\n"; fout << "# EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS #\n"; fout << "###############################################################################\n\n\n"; // ----------------------------------------------------------------------------------- // The next block of code outputs python code that defines the network architecture. // ----------------------------------------------------------------------------------- fout << "def make_netspec():" << endl; fout << " # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n"; fout << " # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl; fout << " n = caffe.NetSpec(); " << endl; fout << " n.data,n.label = L.MemoryData(batch_size=batch_size, channels=input_k, height=input_nr, width=input_nc, ntop=2)" << endl; // iterate the layers starting with the input layer for (auto i = layers.rbegin(); i != layers.rend(); ++i) { // skip input and loss layers if (i->type == "loss" || i->type == "input") continue; if (i->detail_name == "con") { fout << " n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i); fout << ", num_output=" << i->attribute("num_filters"); fout << ", kernel_w=" << i->attribute("nc"); fout << ", kernel_h=" << i->attribute("nr"); fout << ", stride_w=" << i->attribute("stride_x"); fout << ", stride_h=" << i->attribute("stride_y"); fout << ", pad_w=" << i->attribute("padding_x"); fout << ", pad_h=" << i->attribute("padding_y"); fout << ");\n"; } else if (i->detail_name == "relu") { fout << " n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i); fout << ");\n"; } else if (i->detail_name == "sig") { fout << " n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i); fout << ");\n"; } else if (i->detail_name == "prelu") { fout << " n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i); fout << ", channel_shared=True"; fout << ");\n"; } else if (i->detail_name == "max_pool") { fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i); fout << ", pool=P.Pooling.MAX"; if (i->attribute("nc")==0) { fout << ", global_pooling=True"; } else { fout << ", kernel_w=" << i->attribute("nc"); fout << ", kernel_h=" << i->attribute("nr"); } fout << ", stride_w=" << i->attribute("stride_x"); fout << ", stride_h=" << i->attribute("stride_y"); fout << ", pad_w=" << i->attribute("padding_x"); fout << ", pad_h=" << i->attribute("padding_y"); fout << ");\n"; } else if (i->detail_name == "avg_pool") { fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i); fout << ", pool=P.Pooling.AVE"; if (i->attribute("nc")==0) { fout << ", global_pooling=True"; } else { fout << ", kernel_w=" << i->attribute("nc"); fout << ", kernel_h=" << i->attribute("nr"); } if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0) { throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a " "network with such pooling layers."); } fout << ", stride_w=" << i->attribute("stride_x"); fout << ", stride_h=" << i->attribute("stride_y"); fout << ", pad_w=" << i->attribute("padding_x"); fout << ", pad_h=" << i->attribute("padding_y"); fout << ");\n"; } else if (i->detail_name == "fc") { fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i); fout << ", num_output=" << i->attribute("num_outputs"); fout << ", bias_term=True"; fout << ");\n"; } else if (i->detail_name == "fc_no_bias") { fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i); fout << ", num_output=" << i->attribute("num_outputs"); fout << ", bias_term=False"; fout << ");\n"; } else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc") { throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported. Instead, " "you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. " "Then you can convert that 'test mode' network to caffe."); } else if (i->detail_name == "affine_con") { fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i); fout << ", bias_term=True"; fout << ");\n"; } else if (i->detail_name == "affine_fc") { fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i); fout << ", bias_term=True"; fout << ");\n"; } else if (i->detail_name == "add_prev") { fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i); fout << ", n." << find_layer_caffe_name(i, i->attribute("tag")); fout << ", operation=P.Eltwise.SUM"; fout << ");\n"; } else { throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe."); } } fout << " return n.to_proto();\n\n" << endl; // ----------------------------------------------------------------------------------- // The next block of code outputs python code that populates all the filter weights. // ----------------------------------------------------------------------------------- fout << "def set_network_weights(net):\n"; fout << " # populate network parameters\n"; // iterate the layers starting with the input layer for (auto i = layers.rbegin(); i != layers.rend(); ++i) { // skip input and loss layers if (i->type == "loss" || i->type == "input") continue; if (i->detail_name == "con") { const long num_filters = i->attribute("num_filters"); matrix weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1))); matrix biases = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1))); // main filter weights fout << " p = "; print_as_np_array(fout,weights); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][0].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][0].data[:] = p;\n"; // biases fout << " p = "; print_as_np_array(fout,biases); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][1].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][1].data[:] = p;\n"; } else if (i->detail_name == "fc") { matrix weights = trans(rowm(i->params, range(0,i->params.nr()-2))); matrix biases = rowm(i->params, i->params.nr()-1); // main filter weights fout << " p = "; print_as_np_array(fout,weights); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][0].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][0].data[:] = p;\n"; // biases fout << " p = "; print_as_np_array(fout,biases); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][1].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][1].data[:] = p;\n"; } else if (i->detail_name == "fc_no_bias") { matrix weights = trans(i->params); // main filter weights fout << " p = "; print_as_np_array(fout,weights); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][0].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][0].data[:] = p;\n"; } else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc") { const long dims = i->params.size()/2; matrix gamma = trans(rowm(i->params,range(0,dims-1))); matrix beta = trans(rowm(i->params,range(dims, 2*dims-1))); // set gamma weights fout << " p = "; print_as_np_array(fout,gamma); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][0].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][0].data[:] = p;\n"; // set beta weights fout << " p = "; print_as_np_array(fout,beta); fout << ";\n"; fout << " p.shape = net.params['"<caffe_layer_name()<<"'][1].data.shape;\n"; fout << " net.params['"<caffe_layer_name()<<"'][1].data[:] = p;\n"; } else if (i->detail_name == "prelu") { const double param = i->params(0); // main filter weights fout << " tmp = net.params['"<caffe_layer_name()<<"'][0].data.view();\n"; fout << " tmp.shape = 1;\n"; fout << " tmp[0] = "< layers; bool seen_first_tag = false; layer next_layer; std::stack current_tag; long tag_id = -1; virtual void start_document ( ) { layers.clear(); seen_first_tag = false; tag_id = -1; } virtual void end_document ( ) { } virtual void start_element ( const unsigned long line_number, const std::string& name, const dlib::attribute_list& atts ) { if (!seen_first_tag) { if (name != "net") throw dlib::error("The top level XML tag must be a 'net' tag."); seen_first_tag = true; } if (name == "layer") { next_layer = layer(); if (atts["type"] == "skip") { // Don't make a new layer, just apply the tag id to the previous layer if (layers.size() == 0) throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer."); layers.back().skip_id = sa = atts["id"]; // We intentionally leave next_layer empty so the end_element() callback // don't add it as another layer when called. } else if (atts["type"] == "tag") { // Don't make a new layer, just remember the tag id so we can apply it on // the next layer. tag_id = sa = atts["id"]; // We intentionally leave next_layer empty so the end_element() callback // don't add it as another layer when called. } else { next_layer.idx = sa = atts["idx"]; next_layer.type = atts["type"]; if (tag_id != -1) { next_layer.tag_id = tag_id; tag_id = -1; } } } else if (current_tag.size() != 0 && current_tag.top() == "layer") { next_layer.detail_name = name; // copy all the XML tag's attributes into the layer struct atts.reset(); while (atts.move_next()) next_layer.attributes[atts.element().key()] = sa = atts.element().value(); } current_tag.push(name); } virtual void end_element ( const unsigned long line_number, const std::string& name ) { current_tag.pop(); if (name == "layer" && next_layer.type.size() != 0) layers.push_back(next_layer); } virtual void characters ( const std::string& data ) { if (current_tag.size() == 0) return; if (comp_tags_with_params.count(current_tag.top()) != 0) { istringstream sin(data); sin >> next_layer.params; } } virtual void processing_instruction ( const unsigned long line_number, const std::string& target, const std::string& data ) { } }; // ---------------------------------------------------------------------------------------- std::vector parse_dlib_xml( const string& xml_filename ) { doc_handler dh; parse_xml(xml_filename, dh); if (dh.layers.size() == 0) throw dlib::error("No layers found in XML file!"); if (dh.layers.back().type != "input") throw dlib::error("The network in the XML file is missing an input layer!"); return dh.layers; } // ----------------------------------------------------------------------------------------