test_stable_diffusion_inpaint.py 59.7 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27

from diffusers import (
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
28
    AsymmetricAutoencoderKL,
29
    AutoencoderKL,
30
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
32
    LCMScheduler,
33
    LMSDiscreteScheduler,
34
35
36
37
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
38
from diffusers.models.attention_processor import AttnProcessor
39
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
40
41
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
42
43
44
45
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
46
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
47
    require_python39_or_higher,
48
49
50
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
51
52
    slow,
    torch_device,
53
)
54

55
56
57
58
59
from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
60
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
61

62

63
enable_full_determinism()
64
65


66
67
68
69
70
71
72
73
74
75
76
77
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
78
        pipe.unet.set_default_attn_processor()
79
80
81
82
83
84
85
86
87
88
89
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
90
        expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
91
92
93
94
95
96
97
98
99
        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


100
101
102
class StableDiffusionInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
103
    pipeline_class = StableDiffusionInpaintPipeline
104
105
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
106
107
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
108
    image_latents_params = frozenset([])
109
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
110

Patrick von Platen's avatar
Patrick von Platen committed
111
    def get_dummy_components(self, time_cond_proj_dim=None):
112
        torch.manual_seed(0)
113
        unet = UNet2DConditionModel(
114
            block_out_channels=(32, 64),
Patrick von Platen's avatar
Patrick von Platen committed
115
            time_cond_proj_dim=time_cond_proj_dim,
116
117
118
119
120
121
122
123
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
124
        scheduler = PNDMScheduler(skip_prk_steps=True)
125
        torch.manual_seed(0)
126
        vae = AutoencoderKL(
127
128
129
130
131
132
133
134
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
135
        text_encoder_config = CLIPTextConfig(
136
137
138
139
140
141
142
143
144
145
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
146
        text_encoder = CLIPTextModel(text_encoder_config)
147
148
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

149
150
151
152
153
154
155
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
156
            "feature_extractor": None,
157
            "image_encoder": None,
158
159
160
        }
        return components

161
    def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
162
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        if output_pil:
            # Get random floats in [0, 1] as image
            image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
            image = image.cpu().permute(0, 2, 3, 1)[0]
            mask_image = torch.ones_like(image)
            # Convert image and mask_image to [0, 255]
            image = 255 * image
            mask_image = 255 * mask_image
            # Convert to PIL image
            init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
            mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
        else:
            # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
            image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
            # Convert image to [-1, 1]
            init_image = 2.0 * image - 1.0
            mask_image = torch.ones((1, 1, img_res, img_res), device=device)

181
182
183
184
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
185

186
187
188
189
190
191
192
193
194
195
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
196

197
198
199
200
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
201
202
203
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

204
205
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
206
207
        image_slice = image[0, -3:, -3:, -1]

208
        assert image.shape == (1, 64, 64, 3)
209
        expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
210

211
212
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

249
250
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
251
252
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
253
254
255
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

256
257
258
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
259

260
261
262
263
264
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
265

266
267
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
268

269
270
271
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    def test_stable_diffusion_inpaint_mask_latents(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # normal mask + normal image
        ##  `image`: pil, `mask_image``: pil, `masked_image_latents``: None
        inputs = self.get_dummy_inputs(device)
        inputs["strength"] = 0.9
        out_0 = sd_pipe(**inputs).images

        # image latents + mask latents
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
        mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
        masked_image = image * (mask < 0.5)

        generator = torch.Generator(device=device).manual_seed(0)
        image_latents = (
            sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
        )
        torch.randn((1, 4, 32, 32), generator=generator)
        mask_latents = (
            sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
            * sd_pipe.vae.config.scaling_factor
        )
        inputs["image"] = image_latents
        inputs["masked_image_latents"] = mask_latents
        inputs["mask_image"] = mask
        inputs["strength"] = 0.9
        generator = torch.Generator(device=device).manual_seed(0)
        torch.randn((1, 4, 32, 32), generator=generator)
        inputs["generator"] = generator
        out_1 = sd_pipe(**inputs).images
        assert np.abs(out_0 - out_1).max() < 1e-2

Dhruv Nair's avatar
Dhruv Nair committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            image=inputs["image"],
            mask_image=inputs["mask_image"],
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            image=inputs["image"],
            mask_image=inputs["mask_image"],
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

381

382
383
384
385
386
387
388
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

Patrick von Platen's avatar
Patrick von Platen committed
389
    def get_dummy_components(self, time_cond_proj_dim=None):
390
391
392
393
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
Patrick von Platen's avatar
Patrick von Platen committed
394
            time_cond_proj_dim=time_cond_proj_dim,
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
435
            "image_encoder": None,
436
437
438
        }
        return components

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
        # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
        image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
        image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
        # Convert images to [-1, 1]
        init_image1 = 2.0 * image1 - 1.0
        init_image2 = 2.0 * image2 - 1.0

        # empty mask
        mask_image = torch.zeros((1, 1, img_res, img_res), device=device)

        if str(device).startswith("mps"):
            generator1 = torch.manual_seed(seed)
            generator2 = torch.manual_seed(seed)
        else:
            generator1 = torch.Generator(device=device).manual_seed(seed)
            generator2 = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": ["A painting of a squirrel eating a burger"] * 2,
            "image": [init_image1, init_image2],
            "mask_image": [mask_image] * 2,
            "generator": [generator1, generator2],
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

468
469
470
471
472
473
474
475
476
477
478
479
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
480
        expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
481
482
483

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
    def test_stable_diffusion_inpaint_2_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test to confirm if we pass two same image, we will get same output
        inputs = self.get_dummy_inputs(device)
        gen1 = torch.Generator(device=device).manual_seed(0)
        gen2 = torch.Generator(device=device).manual_seed(0)
        for name in ["prompt", "image", "mask_image"]:
            inputs[name] = [inputs[name]] * 2
        inputs["generator"] = [gen1, gen2]
        images = sd_pipe(**inputs).images

        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4

        # test to confirm that if we pass two different images, we will get different output
        inputs = self.get_dummy_inputs_2images(device)
        images = sd_pipe(**inputs).images
        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2

551

552
@slow
553
@require_torch_gpu
554
555
556
557
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

558
559
560
561
562
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

563
564
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
565
        init_image = load_image(
566
567
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
568
569
        )
        mask_image = load_image(
570
571
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
572
        )
573
574
575
576
577
578
579
580
581
582
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
583

584
585
586
587
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
588
589
590
591
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

592
593
594
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
595

596
        assert image.shape == (1, 512, 512, 3)
597
598
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

599
        assert np.abs(expected_slice - image_slice).max() < 6e-4
600
601
602

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
603
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
604
        )
605
        pipe.unet.set_default_attn_processor()
606
607
608
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
609

610
611
612
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
613

614
        assert image.shape == (1, 512, 512, 3)
615
        expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
616
        assert np.abs(expected_slice - image_slice).max() < 1e-1
617

618
    def test_stable_diffusion_inpaint_pndm(self):
619
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
620
            "runwayml/stable-diffusion-inpainting", safety_checker=None
621
        )
622
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
623
624
625
626
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

627
628
629
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
630

631
        assert image.shape == (1, 512, 512, 3)
632
633
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

634
        assert np.abs(expected_slice - image_slice).max() < 5e-3
635

636
637
638
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
639
        )
640
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
641
642
643
644
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

645
646
647
648
649
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
650
651
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

652
        assert np.abs(expected_slice - image_slice).max() < 6e-3
653

654
655
656
657
658
659
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
660
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
661
        )
662
663
664
665
666
667
668
669
670
671
672
673
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
674
    @require_python39_or_higher
675
    @require_torch_2
676
    def test_inpaint_compile(self):
677
678
679
680
681
682
683
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
684

685
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
703

704
705
706
707
708
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
709
        pipe.unet.set_default_attn_processor()
710
711
712
713
714
715
716
717
718
719
720
721
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
722
723
        expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
724

725
726
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
727
        pipe.unet.set_default_attn_processor()
728
729
730
731
732
733
734
735
736
737
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
738
739
        expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

775
776
777
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())

        assert max_diff < 1e-4
778

779

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        )
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
818
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
819
820
821
822
823
824
825
826
827
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
828
        expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
829

830
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
831
832
833
834
835
836
837
838

    def test_stable_diffusion_inpaint_fp16(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
        )
839
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
        pipe.vae = vae
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])

        assert np.abs(expected_slice - image_slice).max() < 5e-2

    def test_stable_diffusion_inpaint_pndm(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
859
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
860
861
862
863
864
865
866
867
868
869
870
        pipe.vae = vae
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
871
        expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
872
873
874
875
876
877
878
879

        assert np.abs(expected_slice - image_slice).max() < 5e-3

    def test_stable_diffusion_inpaint_k_lms(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
880
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
881
882
883
884
885
886
887
888
889
890
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
891
        expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        assert np.abs(expected_slice - image_slice).max() < 6e-3

    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.45 GB is allocated
        assert mem_bytes < 2.45 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
918
    @require_python39_or_higher
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    @require_torch_2
    def test_inpaint_compile(self):
        pass

    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5",
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)

    def test_stable_diffusion_inpaint_strength_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
951
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

    def test_stable_diffusion_simple_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.vae = vae
973
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
974
975
976
977
978
979
980
981
982
983
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
984
985
        expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

    def test_download_local(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.vae = vae
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        pass


1008
1009
1010
1011
1012
1013
1014
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
1015

1016
1017
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1018
        init_image = load_image(
1019
1020
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
1021
1022
        )
        mask_image = load_image(
1023
1024
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
1025
        )
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
1036

1037
1038
1039
1040
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1041

1042
1043
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1044

1045
1046
1047
1048
1049
1050
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1051

1052
1053
1054
1055
1056
1057
1058
1059
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1060

1061
1062
1063
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
1064
        )
1065
1066
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1067

1068
1069
1070
1071
1072
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1073

1074
1075
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1076

1077
1078
1079
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
1080
        )
1081
1082
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1083

1084
1085
1086
1087
1088
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1089

1090
1091
1092
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
1093

1094
1095
1096
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
1097
        )
1098
1099
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1100

Patrick von Platen's avatar
Patrick von Platen committed
1101

1102
1103
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
1104
1105
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1106
        im = Image.fromarray(im)
1107
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
1108
1109
        mask = Image.fromarray((mask * 255).astype(np.uint8))

1110
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
1111
1112
1113

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
1114
        self.assertTrue(isinstance(t_image, torch.Tensor))
1115
1116
1117

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
1118
        self.assertEqual(t_image.ndim, 4)
1119

1120
1121
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
1122
        self.assertEqual(t_image.shape, (1, 3, height, width))
1123
1124
1125

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
1126
        self.assertTrue(t_image.dtype == torch.float32)
1127
1128
1129
1130
1131

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
1132
1133
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
1134
1135
1136
1137

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
1138
1139
1140
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1141
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
1154
1155
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

1156
1157
1158
1159
1160
1161
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
1162
1163
1164

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
1165
        self.assertTrue((t_image_np == t_image_pil).all())
1166
1167

    def test_torch_3D_2D_inputs(self):
1168
1169
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1192
1193
1194
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1195
1196
1197
1198
1199
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1200
        )
1201
1202
1203

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1204
        self.assertTrue((t_image_tensor == t_image_np).all())
1205
1206

    def test_torch_3D_3D_inputs(self):
1207
1208
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1232
1233
1234
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1235
1236
1237
1238
1239
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1240
        )
1241
1242
1243

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1244
        self.assertTrue((t_image_tensor == t_image_np).all())
1245
1246

    def test_torch_4D_2D_inputs(self):
1247
1248
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1272
1273
1274
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1275
1276
1277
1278
1279
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1280
        )
1281
1282
1283

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1284
        self.assertTrue((t_image_tensor == t_image_np).all())
1285
1286

    def test_torch_4D_3D_inputs(self):
1287
1288
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1313
1314
1315
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1316
1317
1318
1319
1320
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1321
        )
1322
1323
1324

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1325
        self.assertTrue((t_image_tensor == t_image_np).all())
1326
1327

    def test_torch_4D_4D_inputs(self):
1328
1329
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1355
1356
1357
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

1358
1359
1360
1361
1362
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1363
        )
1364
1365
1366

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1367
        self.assertTrue((t_image_tensor == t_image_np).all())
1368
1369

    def test_torch_batch_4D_3D(self):
1370
1371
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1396
1397
1398
1399

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

1400
1401
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1402
        )
1403
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1404
1405
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1406
        t_image_np = torch.cat([n[2] for n in nps])
1407
1408
1409

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1410
        self.assertTrue((t_image_tensor == t_image_np).all())
1411
1412

    def test_torch_batch_4D_4D(self):
1413
1414
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1440
1441
1442
1443

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

1444
1445
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1446
        )
1447
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1448
1449
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1450
        t_image_np = torch.cat([n[2] for n in nps])
1451
1452
1453

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1454
        self.assertTrue((t_image_tensor == t_image_np).all())
1455
1456

    def test_shape_mismatch(self):
1457
1458
        height, width = 32, 32

1459
1460
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1461
1462
1463
1464
1465
1466
1467
1468
1469
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1470
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1471
            )
1472
1473
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1484
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1485
            )
1486
1487
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1498
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1499
            )
1500
1501

    def test_type_mismatch(self):
1502
1503
        height, width = 32, 32

1504
1505
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1519
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1520
            )
1521
1522
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1536
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1537
            )
1538
1539

    def test_channels_first(self):
1540
1541
        height, width = 32, 32

1542
1543
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1544
1545
1546
1547
1548
1549
1550
1551
1552
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1553
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1554
            )
1555
1556

    def test_tensor_range(self):
1557
1558
        height, width = 32, 32

1559
1560
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1574
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1575
            )
1576
1577
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1591
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1592
            )
1593
1594
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1608
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1609
            )
1610
1611
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1625
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1626
            )