test_stable_diffusion_inpaint.py 63.3 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27

from diffusers import (
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
28
    AsymmetricAutoencoderKL,
29
    AutoencoderKL,
30
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
32
    EulerAncestralDiscreteScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
33
    LCMScheduler,
34
    LMSDiscreteScheduler,
35
36
37
38
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
39
from diffusers.models.attention_processor import AttnProcessor
40
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
41
42
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
43
44
45
46
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
47
    numpy_cosine_similarity_distance,
Dhruv Nair's avatar
Dhruv Nair committed
48
    require_python39_or_higher,
49
50
51
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
52
53
    slow,
    torch_device,
54
)
55

56
57
58
59
60
from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
Aryan's avatar
Aryan committed
61
62
63
64
65
66
from ..test_pipelines_common import (
    IPAdapterTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineLatentTesterMixin,
    PipelineTesterMixin,
)
67

68

69
enable_full_determinism()
70
71


72
73
74
75
76
77
78
79
80
81
82
83
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
84
        pipe.unet.set_default_attn_processor()
85
86
87
88
89
90
91
92
93
94
95
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
96
        expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
97
98
99
100
101
102
103
104
105
        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


106
class StableDiffusionInpaintPipelineFastTests(
Aryan's avatar
Aryan committed
107
108
109
110
111
    IPAdapterTesterMixin,
    PipelineLatentTesterMixin,
    PipelineKarrasSchedulerTesterMixin,
    PipelineTesterMixin,
    unittest.TestCase,
112
):
113
    pipeline_class = StableDiffusionInpaintPipeline
114
115
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
116
117
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
118
    image_latents_params = frozenset([])
119
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
120

Patrick von Platen's avatar
Patrick von Platen committed
121
    def get_dummy_components(self, time_cond_proj_dim=None):
122
        torch.manual_seed(0)
123
        unet = UNet2DConditionModel(
124
            block_out_channels=(32, 64),
Patrick von Platen's avatar
Patrick von Platen committed
125
            time_cond_proj_dim=time_cond_proj_dim,
126
127
128
129
130
131
132
133
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
134
        scheduler = PNDMScheduler(skip_prk_steps=True)
135
        torch.manual_seed(0)
136
        vae = AutoencoderKL(
137
138
139
140
141
142
143
144
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
145
        text_encoder_config = CLIPTextConfig(
146
147
148
149
150
151
152
153
154
155
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
156
        text_encoder = CLIPTextModel(text_encoder_config)
157
158
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

159
160
161
162
163
164
165
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
166
            "feature_extractor": None,
167
            "image_encoder": None,
168
169
170
        }
        return components

171
    def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
172
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
        if output_pil:
            # Get random floats in [0, 1] as image
            image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
            image = image.cpu().permute(0, 2, 3, 1)[0]
            mask_image = torch.ones_like(image)
            # Convert image and mask_image to [0, 255]
            image = 255 * image
            mask_image = 255 * mask_image
            # Convert to PIL image
            init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
            mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
        else:
            # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
            image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
            # Convert image to [-1, 1]
            init_image = 2.0 * image - 1.0
            mask_image = torch.ones((1, 1, img_res, img_res), device=device)

191
192
193
194
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
195

196
197
198
199
200
201
202
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
203
            "output_type": "np",
204
205
        }
        return inputs
206

207
208
209
210
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
211
212
213
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

214
215
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
216
217
        image_slice = image[0, -3:, -3:, -1]

218
        assert image.shape == (1, 64, 64, 3)
219
        expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
220

221
222
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

259
260
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
261
262
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
263
264
265
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

266
267
268
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
269

270
271
272
273
274
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
275

276
277
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
278

279
280
281
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

282
283
284
285
286
287
288
289
290
291
292
293
294
295
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def test_stable_diffusion_inpaint_mask_latents(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # normal mask + normal image
        ##  `image`: pil, `mask_image``: pil, `masked_image_latents``: None
        inputs = self.get_dummy_inputs(device)
        inputs["strength"] = 0.9
        out_0 = sd_pipe(**inputs).images

        # image latents + mask latents
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
        mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
        masked_image = image * (mask < 0.5)

        generator = torch.Generator(device=device).manual_seed(0)
        image_latents = (
            sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
        )
        torch.randn((1, 4, 32, 32), generator=generator)
        mask_latents = (
            sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
            * sd_pipe.vae.config.scaling_factor
        )
        inputs["image"] = image_latents
        inputs["masked_image_latents"] = mask_latents
        inputs["mask_image"] = mask
        inputs["strength"] = 0.9
        generator = torch.Generator(device=device).manual_seed(0)
        torch.randn((1, 4, 32, 32), generator=generator)
        inputs["generator"] = generator
        out_1 = sd_pipe(**inputs).images
        assert np.abs(out_0 - out_1).max() < 1e-2

Dhruv Nair's avatar
Dhruv Nair committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    def test_pipeline_interrupt(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        prompt = "hey"
        num_inference_steps = 3

        # store intermediate latents from the generation process
        class PipelineState:
            def __init__(self):
                self.state = []

            def apply(self, pipe, i, t, callback_kwargs):
                self.state.append(callback_kwargs["latents"])
                return callback_kwargs

        pipe_state = PipelineState()
        sd_pipe(
            prompt,
            image=inputs["image"],
            mask_image=inputs["mask_image"],
            num_inference_steps=num_inference_steps,
            output_type="np",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=pipe_state.apply,
        ).images

        # interrupt generation at step index
        interrupt_step_idx = 1

        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if i == interrupt_step_idx:
                pipe._interrupt = True

            return callback_kwargs

        output_interrupted = sd_pipe(
            prompt,
            image=inputs["image"],
            mask_image=inputs["mask_image"],
            num_inference_steps=num_inference_steps,
            output_type="latent",
            generator=torch.Generator("cpu").manual_seed(0),
            callback_on_step_end=callback_on_step_end,
        ).images

        # fetch intermediate latents at the interrupted step
        # from the completed generation process
        intermediate_latent = pipe_state.state[interrupt_step_idx]

        # compare the intermediate latent to the output of the interrupted process
        # they should be the same
        assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)

391
392
393
394
395
396
397
398
399
    def test_ip_adapter_single(self, from_simple=False, expected_pipe_slice=None):
        if not from_simple:
            expected_pipe_slice = None
            if torch_device == "cpu":
                expected_pipe_slice = np.array(
                    [0.4390, 0.5452, 0.3772, 0.5448, 0.6031, 0.4480, 0.5194, 0.4687, 0.4640]
                )
        return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)

400

401
402
403
404
405
406
407
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

Patrick von Platen's avatar
Patrick von Platen committed
408
    def get_dummy_components(self, time_cond_proj_dim=None):
409
410
411
412
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
Patrick von Platen's avatar
Patrick von Platen committed
413
            time_cond_proj_dim=time_cond_proj_dim,
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
454
            "image_encoder": None,
455
456
457
        }
        return components

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
        # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
        image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
        image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
        # Convert images to [-1, 1]
        init_image1 = 2.0 * image1 - 1.0
        init_image2 = 2.0 * image2 - 1.0

        # empty mask
        mask_image = torch.zeros((1, 1, img_res, img_res), device=device)

        if str(device).startswith("mps"):
            generator1 = torch.manual_seed(seed)
            generator2 = torch.manual_seed(seed)
        else:
            generator1 = torch.Generator(device=device).manual_seed(seed)
            generator2 = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": ["A painting of a squirrel eating a burger"] * 2,
            "image": [init_image1, init_image2],
            "mask_image": [mask_image] * 2,
            "generator": [generator1, generator2],
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
483
            "output_type": "np",
484
485
486
        }
        return inputs

487
488
489
490
491
492
    def test_ip_adapter_single(self):
        expected_pipe_slice = None
        if torch_device == "cpu":
            expected_pipe_slice = np.array([0.6345, 0.5395, 0.5611, 0.5403, 0.5830, 0.5855, 0.5193, 0.5443, 0.5211])
        return super().test_ip_adapter_single(from_simple=True, expected_pipe_slice=expected_pipe_slice)

493
494
495
496
497
498
499
500
501
502
503
504
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
505
        expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
506
507
508

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    def test_stable_diffusion_inpaint_lcm_custom_timesteps(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        del inputs["num_inference_steps"]
        inputs["timesteps"] = [999, 499]
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def test_stable_diffusion_inpaint_2_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test to confirm if we pass two same image, we will get same output
        inputs = self.get_dummy_inputs(device)
        gen1 = torch.Generator(device=device).manual_seed(0)
        gen2 = torch.Generator(device=device).manual_seed(0)
        for name in ["prompt", "image", "mask_image"]:
            inputs[name] = [inputs[name]] * 2
        inputs["generator"] = [gen1, gen2]
        images = sd_pipe(**inputs).images

        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4

        # test to confirm that if we pass two different images, we will get different output
        inputs = self.get_dummy_inputs_2images(device)
        images = sd_pipe(**inputs).images
        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    def test_stable_diffusion_inpaint_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device, output_pil=False)
        half_dim = inputs["image"].shape[2] // 2
        inputs["mask_image"][0, 0, :half_dim, :half_dim] = 0

        inputs["num_inference_steps"] = 4
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array(
            [[0.6387283, 0.5564158, 0.58631873, 0.5539942, 0.5494673, 0.6461868, 0.5251618, 0.5497595, 0.5508756]]
        )
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4

599

600
@slow
601
@require_torch_gpu
602
603
604
605
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

606
607
608
609
610
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

611
612
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
613
        init_image = load_image(
614
615
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
616
617
        )
        mask_image = load_image(
618
619
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
620
        )
621
622
623
624
625
626
627
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
628
            "output_type": "np",
629
630
        }
        return inputs
631

632
633
634
635
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
636
637
638
639
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

640
641
642
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
643

644
        assert image.shape == (1, 512, 512, 3)
645
646
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

647
        assert np.abs(expected_slice - image_slice).max() < 6e-4
648
649
650

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
651
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
652
        )
653
        pipe.unet.set_default_attn_processor()
654
655
656
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
657

658
659
660
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
661

662
        assert image.shape == (1, 512, 512, 3)
663
        expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
664
        assert np.abs(expected_slice - image_slice).max() < 1e-1
665

666
    def test_stable_diffusion_inpaint_pndm(self):
667
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
668
            "runwayml/stable-diffusion-inpainting", safety_checker=None
669
        )
670
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
671
672
673
674
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

675
676
677
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
678

679
        assert image.shape == (1, 512, 512, 3)
680
681
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

682
        assert np.abs(expected_slice - image_slice).max() < 5e-3
683

684
685
686
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
687
        )
688
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
689
690
691
692
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

693
694
695
696
697
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
698
699
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

700
        assert np.abs(expected_slice - image_slice).max() < 6e-3
701

702
703
704
705
706
707
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
708
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
709
        )
710
711
712
713
714
715
716
717
718
719
720
721
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
722
    @require_python39_or_higher
723
    @require_torch_2
724
    def test_inpaint_compile(self):
725
726
727
728
729
730
731
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
732

733
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
751

752
753
754
755
756
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
757
        pipe.unet.set_default_attn_processor()
758
759
760
761
762
763
764
765
766
767
768
769
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
770
771
        expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
772

773
774
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
775
        pipe.unet.set_default_attn_processor()
776
777
778
779
780
781
782
783
784
785
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
786
787
        expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
788

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

823
824
825
        max_diff = numpy_cosine_similarity_distance(image.flatten(), image_ckpt.flatten())

        assert max_diff < 1e-4
826

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def test_single_file_component_configs(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", variant="fp16")

        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"
        single_file_pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path, load_safety_checker=True)

        for param_name, param_value in single_file_pipe.text_encoder.config.to_dict().items():
            if param_name in ["torch_dtype", "architectures", "_name_or_path"]:
                continue
            assert pipe.text_encoder.config.to_dict()[param_name] == param_value

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "architectures", "_use_default_values"]
        for param_name, param_value in single_file_pipe.unet.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.unet.config[param_name] == param_value
            ), f"{param_name} is differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.vae.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.vae.config[param_name] == param_value
            ), f"{param_name} is differs between single file loading and pretrained loading"

        for param_name, param_value in single_file_pipe.safety_checker.config.to_dict().items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                pipe.safety_checker.config.to_dict()[param_name] == param_value
            ), f"{param_name} is differs between single file loading and pretrained loading"

860

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        )
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
889
            "output_type": "np",
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
890
891
892
893
894
895
896
897
898
        }
        return inputs

    def test_stable_diffusion_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
899
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
900
901
902
903
904
905
906
907
908
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
909
        expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
910

911
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
912
913
914
915
916
917
918
919

    def test_stable_diffusion_inpaint_fp16(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
        )
920
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
        pipe.vae = vae
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])

        assert np.abs(expected_slice - image_slice).max() < 5e-2

    def test_stable_diffusion_inpaint_pndm(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
940
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
941
942
943
944
945
946
947
948
949
950
951
        pipe.vae = vae
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
952
        expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
953
954
955
956
957
958
959
960

        assert np.abs(expected_slice - image_slice).max() < 5e-3

    def test_stable_diffusion_inpaint_k_lms(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
961
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
962
963
964
965
966
967
968
969
970
971
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
972
        expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
        assert np.abs(expected_slice - image_slice).max() < 6e-3

    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.45 GB is allocated
        assert mem_bytes < 2.45 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
999
    @require_python39_or_higher
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
    @require_torch_2
    def test_inpaint_compile(self):
        pass

    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5",
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)

    def test_stable_diffusion_inpaint_strength_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
1032
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

    def test_stable_diffusion_simple_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.vae = vae
1054
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
1065
1066
        expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

    def test_download_local(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.vae = vae
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        pass


1089
1090
1091
1092
1093
1094
1095
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
1096

1097
1098
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
1099
        init_image = load_image(
1100
1101
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
1102
1103
        )
        mask_image = load_image(
1104
1105
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
1106
        )
1107
1108
1109
1110
1111
1112
1113
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
1114
            "output_type": "np",
1115
1116
        }
        return inputs
1117

1118
1119
1120
1121
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1122

1123
1124
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1125

1126
1127
1128
1129
1130
1131
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1132

1133
1134
1135
1136
1137
1138
1139
1140
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1141

1142
1143
1144
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
1145
        )
1146
1147
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1148

1149
1150
1151
1152
1153
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1154

1155
1156
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
1157

1158
1159
1160
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
1161
        )
1162
1163
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1164

1165
1166
1167
1168
1169
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
1170

1171
1172
1173
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
1174

1175
1176
1177
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
1178
        )
1179
1180
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1181

Patrick von Platen's avatar
Patrick von Platen committed
1182

1183
1184
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
1185
1186
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1187
        im = Image.fromarray(im)
1188
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
1189
1190
        mask = Image.fromarray((mask * 255).astype(np.uint8))

1191
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
1192
1193
1194

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
1195
        self.assertTrue(isinstance(t_image, torch.Tensor))
1196
1197
1198

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
1199
        self.assertEqual(t_image.ndim, 4)
1200

1201
1202
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
1203
        self.assertEqual(t_image.shape, (1, 3, height, width))
1204
1205
1206

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
1207
        self.assertTrue(t_image.dtype == torch.float32)
1208
1209
1210
1211
1212

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
1213
1214
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
1215
1216
1217
1218

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
1219
1220
1221
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1222
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
1235
1236
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

1237
1238
1239
1240
1241
1242
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
1243
1244
1245

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
1246
        self.assertTrue((t_image_np == t_image_pil).all())
1247
1248

    def test_torch_3D_2D_inputs(self):
1249
1250
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1273
1274
1275
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1276
1277
1278
1279
1280
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1281
        )
1282
1283
1284

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1285
        self.assertTrue((t_image_tensor == t_image_np).all())
1286
1287

    def test_torch_3D_3D_inputs(self):
1288
1289
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1313
1314
1315
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1316
1317
1318
1319
1320
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1321
        )
1322
1323
1324

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1325
        self.assertTrue((t_image_tensor == t_image_np).all())
1326
1327

    def test_torch_4D_2D_inputs(self):
1328
1329
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1353
1354
1355
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1356
1357
1358
1359
1360
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1361
        )
1362
1363
1364

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1365
        self.assertTrue((t_image_tensor == t_image_np).all())
1366
1367

    def test_torch_4D_3D_inputs(self):
1368
1369
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1394
1395
1396
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1397
1398
1399
1400
1401
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1402
        )
1403
1404
1405

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1406
        self.assertTrue((t_image_tensor == t_image_np).all())
1407
1408

    def test_torch_4D_4D_inputs(self):
1409
1410
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1436
1437
1438
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

1439
1440
1441
1442
1443
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1444
        )
1445
1446
1447

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1448
        self.assertTrue((t_image_tensor == t_image_np).all())
1449
1450

    def test_torch_batch_4D_3D(self):
1451
1452
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1477
1478
1479
1480

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

1481
1482
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1483
        )
1484
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1485
1486
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1487
        t_image_np = torch.cat([n[2] for n in nps])
1488
1489
1490

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1491
        self.assertTrue((t_image_tensor == t_image_np).all())
1492
1493

    def test_torch_batch_4D_4D(self):
1494
1495
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1521
1522
1523
1524

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

1525
1526
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1527
        )
1528
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1529
1530
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1531
        t_image_np = torch.cat([n[2] for n in nps])
1532
1533
1534

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1535
        self.assertTrue((t_image_tensor == t_image_np).all())
1536
1537

    def test_shape_mismatch(self):
1538
1539
        height, width = 32, 32

1540
1541
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1542
1543
1544
1545
1546
1547
1548
1549
1550
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1551
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1552
            )
1553
1554
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1565
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1566
            )
1567
1568
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1579
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1580
            )
1581
1582

    def test_type_mismatch(self):
1583
1584
        height, width = 32, 32

1585
1586
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1600
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1601
            )
1602
1603
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1617
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1618
            )
1619
1620

    def test_channels_first(self):
1621
1622
        height, width = 32, 32

1623
1624
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1625
1626
1627
1628
1629
1630
1631
1632
1633
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1634
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1635
            )
1636
1637

    def test_tensor_range(self):
1638
1639
        height, width = 32, 32

1640
1641
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1655
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1656
            )
1657
1658
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1672
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1673
            )
1674
1675
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1689
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1690
            )
1691
1692
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1706
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1707
            )