test_stable_diffusion_inpaint.py 23.2 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from packaging import version
23
24
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
25
26
27

from diffusers import (
    AutoencoderKL,
28
    DPMSolverMultistepScheduler,
29
    LMSDiscreteScheduler,
30
31
32
33
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
34
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
35
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
36
from diffusers.utils.testing_utils import require_torch_gpu
37

38
39
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
40

41
42
43
44

torch.backends.cuda.matmul.allow_tf32 = False


45
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
46
    pipeline_class = StableDiffusionInpaintPipeline
47
48
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
49

50
    def get_dummy_components(self):
51
        torch.manual_seed(0)
52
        unet = UNet2DConditionModel(
53
54
55
56
57
58
59
60
61
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
62
        scheduler = PNDMScheduler(skip_prk_steps=True)
63
        torch.manual_seed(0)
64
        vae = AutoencoderKL(
65
66
67
68
69
70
71
72
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
73
        text_encoder_config = CLIPTextConfig(
74
75
76
77
78
79
80
81
82
83
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
84
        text_encoder = CLIPTextModel(text_encoder_config)
85
86
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

87
88
89
90
91
92
93
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
94
            "feature_extractor": None,
95
96
97
98
99
100
101
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
Patrick von Platen's avatar
Patrick von Platen committed
102
103
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((64, 64))
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
118

119
120
121
122
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
123
124
125
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

126
127
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
128
129
        image_slice = image[0, -3:, -3:, -1]

130
        assert image.shape == (1, 64, 64, 3)
Patrick von Platen's avatar
Patrick von Platen committed
131
        expected_slice = np.array([0.4723, 0.5731, 0.3939, 0.5441, 0.5922, 0.4392, 0.5059, 0.4651, 0.4474])
132

133
134
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

135
136
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
137
138
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
139
140
141
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

142
143
144
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
145

146
147
148
149
150
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
151

152
153
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
154

155
156

@slow
157
@require_torch_gpu
158
159
160
161
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

162
163
164
165
166
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

167
168
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
169
        init_image = load_image(
170
171
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
172
173
        )
        mask_image = load_image(
174
175
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
176
        )
177
178
179
180
181
182
183
184
185
186
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
187

188
189
190
191
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
192
193
194
195
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

196
197
198
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
199

200
        assert image.shape == (1, 512, 512, 3)
201
202
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

203
204
205
206
        assert np.abs(expected_slice - image_slice).max() < 1e-4

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
207
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
208
        )
209
210
211
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
212

213
214
215
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
216

217
        assert image.shape == (1, 512, 512, 3)
218
        expected_slice = np.array([0.1350, 0.1123, 0.1350, 0.1641, 0.1328, 0.1230, 0.1289, 0.1531, 0.1687])
219
220

        assert np.abs(expected_slice - image_slice).max() < 5e-2
221

222
    def test_stable_diffusion_inpaint_pndm(self):
223
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
224
            "runwayml/stable-diffusion-inpainting", safety_checker=None
225
        )
226
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
227
228
229
230
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

231
232
233
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
234

235
        assert image.shape == (1, 512, 512, 3)
236
237
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

238
        assert np.abs(expected_slice - image_slice).max() < 1e-4
239

240
241
242
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
243
        )
244
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
245
246
247
248
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

249
250
251
252
253
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
254
255
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

256
        assert np.abs(expected_slice - image_slice).max() < 1e-4
257

258
259
260
261
262
263
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
264
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
265
        )
266
267
268
269
270
271
272
273
274
275
276
277
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def test_inpaint_compile(self):
        if version.parse(torch.__version__) < version.parse("2.0"):
            print(f"Test `test_stable_diffusion_ddim` is skipped because {torch.__version__} is < 2.0")
            return

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

        assert np.abs(expected_slice - image_slice).max() < 1e-4
        assert np.abs(expected_slice - image_slice).max() < 1e-3

303

304
305
306
307
308
309
310
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
311

312
313
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
314
        init_image = load_image(
315
316
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
317
318
        )
        mask_image = load_image(
319
320
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
321
        )
322
323
324
325
326
327
328
329
330
331
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
332

333
334
335
336
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
337

338
339
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
340

341
342
343
344
345
346
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
347

348
349
350
351
352
353
354
355
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
356

357
358
359
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
360
        )
361
362
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
363

364
365
366
367
368
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
369

370
371
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
372

373
374
375
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
376
        )
377
378
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
379

380
381
382
383
384
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
385

386
387
388
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
389

390
391
392
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
393
        )
394
395
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
396

Patrick von Platen's avatar
Patrick von Platen committed
397

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
        im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im = Image.fromarray(im)
        mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask = Image.fromarray((mask * 255).astype(np.uint8))

        t_mask, t_masked = prepare_mask_and_masked_image(im, mask)

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)

        self.assertEqual(t_mask.shape, (1, 1, 32, 32))
        self.assertEqual(t_masked.shape, (1, 3, 32, 32))

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
        im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
        im_pil = Image.fromarray(im_np)
        mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
        t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())

    def test_torch_3D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_3D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_2D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_3D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_4D_4D_inputs(self):
        im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_3D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_torch_batch_4D_4D(self):
        im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
        mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

        t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
        nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())

    def test_shape_mismatch(self):
        # test height and width
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
        # test batch dim
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))

    def test_type_mismatch(self):
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
        # test tensors-only
        with self.assertRaises(TypeError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))

    def test_channels_first(self):
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
            prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))

    def test_tensor_range(self):
        # test im <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
        # test im >= -1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
        # test mask <= 1
        with self.assertRaises(ValueError):
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
564
            prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)