modeling_text_unet.py 93.3 KB
Newer Older
1
from typing import Any, Dict, List, Optional, Tuple, Union
2
3
4
5

import numpy as np
import torch
import torch.nn as nn
6
import torch.nn.functional as F
7
8

from ...configuration_utils import ConfigMixin, register_to_config
9
from ...models import ModelMixin
10
from ...models.activations import get_activation
Patrick von Platen's avatar
Patrick von Platen committed
11
from ...models.attention import Attention
12
from ...models.attention_processor import (
13
14
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
15
16
17
18
19
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    AttnProcessor,
)
20
from ...models.dual_transformer_2d import DualTransformer2DModel
YiYi Xu's avatar
YiYi Xu committed
21
22
from ...models.embeddings import (
    GaussianFourierProjection,
YiYi Xu's avatar
YiYi Xu committed
23
24
25
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
YiYi Xu's avatar
YiYi Xu committed
26
27
28
29
30
31
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
32
from ...models.transformer_2d import Transformer2DModel
33
from ...models.unet_2d_condition import UNet2DConditionOutput
34
from ...utils import is_torch_version, logging
35
36
37
38
39
40
41
42
43
44
45
46
47
48


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
49
    num_attention_heads,
50
51
52
    resnet_groups=None,
    cross_attention_dim=None,
    downsample_padding=None,
53
54
55
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
56
    upcast_attention=False,
57
    resnet_time_scale_shift="default",
58
59
60
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
61
62
63
64
65
66
67
68
69
70
71
72
73
):
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlockFlat":
        return DownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
74
            resnet_time_scale_shift=resnet_time_scale_shift,
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        )
    elif down_block_type == "CrossAttnDownBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockFlat")
        return CrossAttnDownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
90
            num_attention_heads=num_attention_heads,
91
92
93
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
94
            resnet_time_scale_shift=resnet_time_scale_shift,
95
96
97
98
99
100
101
102
103
104
105
106
107
108
        )
    raise ValueError(f"{down_block_type} is not supported.")


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
    out_channels,
    prev_output_channel,
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
109
    num_attention_heads,
110
111
    resnet_groups=None,
    cross_attention_dim=None,
112
113
114
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
115
    upcast_attention=False,
116
    resnet_time_scale_shift="default",
117
118
119
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
120
121
122
123
124
125
126
127
128
129
130
131
132
):
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlockFlat":
        return UpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
133
            resnet_time_scale_shift=resnet_time_scale_shift,
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        )
    elif up_block_type == "CrossAttnUpBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockFlat")
        return CrossAttnUpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
149
            num_attention_heads=num_attention_heads,
150
151
152
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
153
            resnet_time_scale_shift=resnet_time_scale_shift,
154
155
156
157
        )
    raise ValueError(f"{up_block_type} is not supported.")


158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
class FourierEmbedder(nn.Module):
    def __init__(self, num_freqs=64, temperature=100):
        super().__init__()

        self.num_freqs = num_freqs
        self.temperature = temperature

        freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
        freq_bands = freq_bands[None, None, None]
        self.register_buffer("freq_bands", freq_bands, persistent=False)

    def __call__(self, x):
        x = self.freq_bands * x.unsqueeze(-1)
        return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1)


class PositionNet(nn.Module):
175
    def __init__(self, positive_len, out_dim, feature_type, fourier_freqs=8):
176
177
178
179
180
181
182
183
184
185
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

        self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        if feature_type == "text-only":
            self.linears = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

        elif feature_type == "text-image":
            self.linears_text = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.linears_image = nn.Sequential(
                nn.Linear(self.positive_len + self.position_dim, 512),
                nn.SiLU(),
                nn.Linear(512, 512),
                nn.SiLU(),
                nn.Linear(512, out_dim),
            )
            self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
            self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))

214
215
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

216
217
218
219
220
221
222
223
224
225
    def forward(
        self,
        boxes,
        masks,
        positive_embeddings=None,
        phrases_masks=None,
        image_masks=None,
        phrases_embeddings=None,
        image_embeddings=None,
    ):
226
227
        masks = masks.unsqueeze(-1)

228
        xyxy_embedding = self.fourier_embedder(boxes)
229
230
231
        xyxy_null = self.null_position_feature.view(1, 1, -1)
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
        if positive_embeddings:
            positive_null = self.null_positive_feature.view(1, 1, -1)
            positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null

            objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
        else:
            phrases_masks = phrases_masks.unsqueeze(-1)
            image_masks = image_masks.unsqueeze(-1)

            text_null = self.null_text_feature.view(1, 1, -1)
            image_null = self.null_image_feature.view(1, 1, -1)

            phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
            image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null

            objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
            objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
            objs = torch.cat([objs_text, objs_image], dim=1)

251
252
253
        return objs


254
255
256
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel with UNet2DConditionModel->UNetFlatConditionModel, nn.Conv2d->LinearMultiDim, Block2D->BlockFlat
class UNetFlatConditionModel(ModelMixin, ConfigMixin):
    r"""
Steven Liu's avatar
Steven Liu committed
257
258
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
259

Steven Liu's avatar
Steven Liu committed
260
261
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
262
263
264
265

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
266
267
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
268
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
269
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
270
271
272
273
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
274
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlockFlatCrossAttn"`):
Steven Liu's avatar
Steven Liu committed
275
276
277
            Block type for middle of UNet, it can be either `UNetMidBlockFlatCrossAttn` or
            `UNetMidBlockFlatSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat")`):
278
            The tuple of upsample blocks to use.
279
280
281
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
282
283
284
285
286
287
288
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
289
            If `None`, normalization and activation layers is skipped in post-processing.
290
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
291
292
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
293
294
295
296
297
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlockFlat`], [`~models.unet_2d_blocks.CrossAttnUpBlockFlat`],
            [`~models.unet_2d_blocks.UNetMidBlockFlatCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
298
299
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
300
301
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
302
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
303
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
304
305
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
306
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
307
308
            for ResNet blocks (see [`~models.resnet.ResnetBlockFlat`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
309
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
310
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
311
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
312
313
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
314
315
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
316
        num_class_embeds (`int`, *optional*, defaults to `None`):
317
318
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
319
        time_embedding_type (`str`, *optional*, defaults to `positional`):
320
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
321
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
322
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
323
324
325
326
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
327
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
328
329
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
330
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
331
332
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
333
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
334
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
335
336
337
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlockFlatSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
338
339
340
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "DownBlockFlat",
        ),
360
        mid_block_type: Optional[str] = "UNetMidBlockFlatCrossAttn",
361
362
363
364
365
366
        up_block_types: Tuple[str] = (
            "UpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
        ),
367
        only_cross_attention: Union[bool, Tuple[bool]] = False,
368
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
369
        layers_per_block: Union[int, Tuple[int]] = 2,
370
371
372
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
373
        norm_num_groups: Optional[int] = 32,
374
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
375
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
376
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
William Berman's avatar
William Berman committed
377
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
378
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
379
        attention_head_dim: Union[int, Tuple[int]] = 8,
380
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
381
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
382
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
383
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
384
        addition_embed_type: Optional[str] = None,
385
        addition_time_embed_dim: Optional[int] = None,
386
        num_class_embeds: Optional[int] = None,
387
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
388
        resnet_time_scale_shift: str = "default",
389
390
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
391
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
392
        time_embedding_dim: Optional[int] = None,
393
        time_embedding_act_fn: Optional[str] = None,
394
395
396
397
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
398
        projection_class_embeddings_input_dim: Optional[int] = None,
399
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
400
        class_embeddings_concat: bool = False,
401
        mid_block_only_cross_attention: Optional[bool] = None,
402
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
403
        addition_embed_type_num_heads=64,
404
405
406
407
408
    ):
        super().__init__()

        self.sample_size = sample_size

409
410
411
412
413
414
415
416
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads`"
                " because of a naming issue as described in"
                " https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing"
                " `num_attention_heads` will only be supported in diffusers v0.19."
            )

417
418
419
420
421
422
423
424
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                "Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`:"
                f" {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`:"
                f" {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `only_cross_attention` as `down_block_types`."
                f" `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

444
445
446
447
448
449
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`:"
                f" {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
450
451
452
453
454
455
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`:"
                f" {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
456
457
458
459
460
461
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`:"
                f" {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

462
463
464
465
466
467
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`:"
                f" {layers_per_block}. `down_block_types`: {down_block_types}."
            )

468
        # input
469
470
471
472
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = LinearMultiDim(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
473
474

        # time
475
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
476
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
477
478
479
480
481
482
483
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
484
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
485
486
487
488
489

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
490
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
491
            )
492

493
494
495
496
497
498
499
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
500

YiYi Xu's avatar
YiYi Xu committed
501
502
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
503
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
504
505
506
507
508
509
510
511
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
512
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
513
514
515
516
517
518
519
520
521
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
522
523
524
525
526
527
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
528
529
530
531
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
532
533
534
        else:
            self.encoder_hid_proj = None

535
        # class embedding
Will Berman's avatar
Will Berman committed
536
        if class_embed_type is None and num_class_embeds is not None:
537
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
538
        elif class_embed_type == "timestep":
539
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
540
541
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
542
543
544
545
546
547
548
549
550
551
552
553
554
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
555
556
557
558
559
560
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
561
562
        else:
            self.class_embedding = None
563

Patrick von Platen's avatar
Patrick von Platen committed
564
565
566
567
568
569
570
571
572
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
573
574
575
576
577
578
579
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
580
581
582
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
583
584
585
586
587
588
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
589
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
590
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
591

592
593
594
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
595
            self.time_embed_act = get_activation(time_embedding_act_fn)
596

597
598
599
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

600
        if isinstance(only_cross_attention, bool):
601
602
603
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

604
605
            only_cross_attention = [only_cross_attention] * len(down_block_types)

606
607
608
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

609
610
611
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
612
613
614
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
615
616
617
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

618
619
620
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

621
622
623
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
624
625
626
627
628
629
630
631
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

632
633
634
635
636
637
638
639
640
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
641
                num_layers=layers_per_block[i],
642
                transformer_layers_per_block=transformer_layers_per_block[i],
643
644
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
645
                temb_channels=blocks_time_embed_dim,
646
647
648
649
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
650
                cross_attention_dim=cross_attention_dim[i],
651
                num_attention_heads=num_attention_heads[i],
652
653
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
654
                use_linear_projection=use_linear_projection,
655
                only_cross_attention=only_cross_attention[i],
656
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
657
                resnet_time_scale_shift=resnet_time_scale_shift,
658
                attention_type=attention_type,
659
660
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
661
                cross_attention_norm=cross_attention_norm,
662
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
663
664
665
666
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
667
668
        if mid_block_type == "UNetMidBlockFlatCrossAttn":
            self.mid_block = UNetMidBlockFlatCrossAttn(
669
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
670
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
671
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
672
673
674
675
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
676
                cross_attention_dim=cross_attention_dim[-1],
677
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
678
679
680
681
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
682
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
683
684
685
686
            )
        elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn":
            self.mid_block = UNetMidBlockFlatSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
687
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
688
689
690
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
691
                cross_attention_dim=cross_attention_dim[-1],
692
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
693
694
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
695
                skip_time_act=resnet_skip_time_act,
696
                only_cross_attention=mid_block_only_cross_attention,
697
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
698
            )
699
700
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
701
702
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
703
704
705
706
707
708

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
709
        reversed_num_attention_heads = list(reversed(num_attention_heads))
710
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
711
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
712
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
713
        only_cross_attention = list(reversed(only_cross_attention))
714

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
732
                num_layers=reversed_layers_per_block[i] + 1,
733
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
734
735
736
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
737
                temb_channels=blocks_time_embed_dim,
738
739
740
741
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
742
                cross_attention_dim=reversed_cross_attention_dim[i],
743
                num_attention_heads=reversed_num_attention_heads[i],
744
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
745
                use_linear_projection=use_linear_projection,
746
                only_cross_attention=only_cross_attention[i],
747
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
748
                resnet_time_scale_shift=resnet_time_scale_shift,
749
                attention_type=attention_type,
750
751
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
752
                cross_attention_norm=cross_attention_norm,
753
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
754
755
756
757
758
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
759
760
761
762
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
763

764
            self.conv_act = get_activation(act_fn)
765

766
767
768
769
770
771
772
773
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = LinearMultiDim(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
774

775
        if attention_type in ["gated", "gated-text-image"]:
776
777
778
779
780
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
781
782
783
784
785

            feature_type = "text-only" if attention_type == "gated" else "text-image"
            self.position_net = PositionNet(
                positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
            )
786

787
    @property
Patrick von Platen's avatar
Patrick von Platen committed
788
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
789
790
791
792
793
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
794
        # set recursively
795
796
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
797
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
798
799
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
800
801
802
803
804
805
806
807
808
809
810

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
811
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
812
        r"""
Steven Liu's avatar
Steven Liu committed
813
814
        Sets the attention processor to use to compute attention.

815
        Parameters:
Steven Liu's avatar
Steven Liu committed
816
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
817
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
818
819
820
821
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
822
823
824
825
826
827
828
829
830
831
832

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
833
            if hasattr(module, "set_processor"):
834
835
836
837
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
838

839
840
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
841

842
843
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
844

845
846
847
848
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
849
850
851
852
853
854
855
856
857
858
859
        if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnAddedKVProcessor()
        elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
            processor = AttnProcessor()
        else:
            raise ValueError(
                "Cannot call `set_default_attn_processor` when attention processors are of type"
                f" {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor)
860

861
    def set_attention_slice(self, slice_size):
862
863
864
        r"""
        Enable sliced attention computation.

Steven Liu's avatar
Steven Liu committed
865
866
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
867
868

        Args:
Patrick von Platen's avatar
Patrick von Platen committed
869
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
870
871
872
873
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
874
875
876
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
877
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
878
879
880
881
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
882
                fn_recursive_retrieve_sliceable_dims(child)
883
884
885

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
886
            fn_recursive_retrieve_sliceable_dims(module)
887

Alexander Pivovarov's avatar
Alexander Pivovarov committed
888
        num_sliceable_layers = len(sliceable_head_dims)
889
890
891
892
893
894
895

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
896
            slice_size = num_sliceable_layers * [1]
897

Alexander Pivovarov's avatar
Alexander Pivovarov committed
898
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
899
900

        if len(slice_size) != len(sliceable_head_dims):
901
            raise ValueError(
902
903
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
904
905
            )

906
907
908
909
910
911
912
913
914
915
916
917
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())
918

919
920
            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)
921

922
923
924
        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
925
926

    def _set_gradient_checkpointing(self, module, value=False):
927
        if hasattr(module, "gradient_checkpointing"):
928
929
930
931
932
933
934
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
935
        class_labels: Optional[torch.Tensor] = None,
936
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
937
        attention_mask: Optional[torch.Tensor] = None,
938
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
939
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
940
941
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
942
        encoder_attention_mask: Optional[torch.Tensor] = None,
943
944
945
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
Steven Liu's avatar
Steven Liu committed
946
947
        The [`UNetFlatConditionModel`] forward method.

948
        Args:
Steven Liu's avatar
Steven Liu committed
949
950
951
952
953
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
954
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
955
956
957
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
958
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
959
960
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
961
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
962
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
963
964
965
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
966
967
968

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
969
970
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
971
972
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
973
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
974
975
976
977
978
979
980
981
982
983
984
985
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

986
987
988
989
990
991
992
993
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
994
        if attention_mask is not None:
995
996
997
998
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
999
1000
1001
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

1002
1003
1004
1005
1006
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

1007
1008
1009
1010
1011
1012
1013
1014
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
1015
1016
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
1017
            if isinstance(timestep, float):
1018
1019
1020
1021
1022
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
1023
1024
1025
1026
1027
1028
1029
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

1030
        # `Timesteps` does not contain any weights and will always return f32 tensors
1031
1032
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
1033
        t_emb = t_emb.to(dtype=sample.dtype)
1034
1035

        emb = self.time_embedding(t_emb, timestep_cond)
1036
        aug_emb = None
1037

Will Berman's avatar
Will Berman committed
1038
        if self.class_embedding is not None:
1039
1040
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
1041
1042
1043
1044

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

1045
1046
1047
1048
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

1049
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1050
1051
1052
1053
1054

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
1055

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1058
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
1059
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires"
                    " the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
1069
        elif self.config.addition_embed_type == "text_time":
1070
            # SDXL - style
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
                    " the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
                    " the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the"
                    " keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires"
                    " the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
1109
1110

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
1111

1112
1113
1114
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
1115
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
1116
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which"
                    " requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
1127
1128
1129
1130
1131
1132
1133
1134
1135
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires"
                    " the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1136
1137
1138
        # 2. pre-process
        sample = self.conv_in(sample)

1139
1140
1141
1142
1143
1144
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

1145
        # 3. down
1146
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
Will Berman's avatar
Will Berman committed
1147
1148
1149
1150

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

1151
1152
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
1153
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
1154
1155
1156
1157
1158
                # For t2i-adapter CrossAttnDownBlockFlat
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

1159
1160
1161
1162
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1163
                    attention_mask=attention_mask,
1164
                    cross_attention_kwargs=cross_attention_kwargs,
1165
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
1166
                    **additional_residuals,
1167
1168
                )
            else:
1169
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
1170

Will Berman's avatar
Will Berman committed
1171
1172
1173
                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)

1174
1175
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
1176
        if is_controlnet:
1177
1178
1179
1180
1181
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
1182
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
1183
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1184
1185
1186

            down_block_res_samples = new_down_block_res_samples

1187
        # 4. mid
1188
1189
1190
1191
1192
1193
1194
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
1195
                encoder_attention_mask=encoder_attention_mask,
1196
            )
1197
1198
1199
1200
1201
1202
1203
            # To support T2I-Adapter-XL
            if (
                is_adapter
                and len(down_block_additional_residuals) > 0
                and sample.shape == down_block_additional_residuals[0].shape
            ):
                sample += down_block_additional_residuals.pop(0)
1204

Will Berman's avatar
Will Berman committed
1205
        if is_controlnet:
1206
            sample = sample + mid_block_additional_residual
1207

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1220
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1221
1222
1223
1224
1225
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1226
                    cross_attention_kwargs=cross_attention_kwargs,
1227
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1228
                    attention_mask=attention_mask,
1229
                    encoder_attention_mask=encoder_attention_mask,
1230
1231
1232
                )
            else:
                sample = upsample_block(
1233
1234
1235
1236
1237
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    upsample_size=upsample_size,
                    scale=lora_scale,
1238
                )
1239

1240
        # 6. post-process
1241
1242
1243
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)


class LinearMultiDim(nn.Linear):
    def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs):
        in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features)
        if out_features is None:
            out_features = in_features
        out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features)
        self.in_features_multidim = in_features
        self.out_features_multidim = out_features
        super().__init__(np.array(in_features).prod(), np.array(out_features).prod())

    def forward(self, input_tensor, *args, **kwargs):
        shape = input_tensor.shape
        n_dim = len(self.in_features_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features)
        output_tensor = super().forward(input_tensor)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim)
        return output_tensor


class ResnetBlockFlat(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        time_embedding_norm="default",
        use_in_shortcut=None,
        second_dim=4,
        **kwargs,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True

        in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels)
        self.in_channels_prod = np.array(in_channels).prod()
        self.channels_multidim = in_channels

        if out_channels is not None:
            out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels)
            out_channels_prod = np.array(out_channels).prod()
            self.out_channels_multidim = out_channels
        else:
            out_channels_prod = self.in_channels_prod
            self.out_channels_multidim = self.channels_multidim
        self.time_embedding_norm = time_embedding_norm

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True)
        self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        if temb_channels is not None:
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod)
        else:
            self.time_emb_proj = None

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        self.nonlinearity = nn.SiLU()

        self.use_in_shortcut = (
            self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut
        )

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = torch.nn.Conv2d(
                self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0
            )

    def forward(self, input_tensor, temb):
        shape = input_tensor.shape
        n_dim = len(self.channels_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1)
        input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1)

        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        if temb is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
            hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden_states

        output_tensor = output_tensor.view(*shape[0:-n_dim], -1)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim)

        return output_tensor


# Copied from diffusers.models.unet_2d_blocks.DownBlock2D with DownBlock2D->DownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class DownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1418
    def forward(self, hidden_states, temb=None, scale: float = 1.0):
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1430
1431
1432
1433
1434
1435
1436
1437
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1438
            else:
1439
                hidden_states = resnet(hidden_states, temb, scale=scale)
1440

1441
            output_states = output_states + (hidden_states,)
1442
1443
1444

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1445
                hidden_states = downsampler(hidden_states, scale=scale)
1446

1447
            output_states = output_states + (hidden_states,)
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D with CrossAttnDownBlock2D->CrossAttnDownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class CrossAttnDownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1461
        transformer_layers_per_block: int = 1,
1462
1463
1464
1465
1466
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1467
        num_attention_heads=1,
1468
1469
1470
1471
1472
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1473
        use_linear_projection=False,
1474
        only_cross_attention=False,
1475
        upcast_attention=False,
1476
        attention_type="default",
1477
1478
1479
1480
1481
    ):
        super().__init__()
        resnets = []
        attentions = []

1482
        self.has_cross_attention = True
1483
        self.num_attention_heads = num_attention_heads
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1504
1505
                        num_attention_heads,
                        out_channels // num_attention_heads,
1506
                        in_channels=out_channels,
1507
                        num_layers=transformer_layers_per_block,
1508
1509
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1510
                        use_linear_projection=use_linear_projection,
1511
                        only_cross_attention=only_cross_attention,
1512
                        upcast_attention=upcast_attention,
1513
                        attention_type=attention_type,
1514
1515
1516
1517
1518
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1519
1520
                        num_attention_heads,
                        out_channels // num_attention_heads,
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1543
    def forward(
1544
1545
1546
1547
1548
1549
1550
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1551
        additional_residuals=None,
1552
    ):
1553
1554
        output_states = ()

1555
1556
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

Will Berman's avatar
Will Berman committed
1557
1558
1559
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1571
1572
1573
1574
1575
1576
1577
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1578
                hidden_states = attn(
1579
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1580
1581
1582
1583
1584
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1585
                )[0]
1586
            else:
1587
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1588
1589
1590
1591
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1592
1593
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1594
1595
                    return_dict=False,
                )[0]
1596

Will Berman's avatar
Will Berman committed
1597
1598
1599
1600
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1601
            output_states = output_states + (hidden_states,)
1602
1603
1604

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
1605
                hidden_states = downsampler(hidden_states, scale=lora_scale)
1606

1607
            output_states = output_states + (hidden_states,)
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.UpBlock2D with UpBlock2D->UpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class UpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

1661
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, scale: float = 1.0):
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1676
1677
1678
1679
1680
1681
1682
1683
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1684
            else:
1685
                hidden_states = resnet(hidden_states, temb, scale=scale)
1686
1687
1688

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1689
                hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D with CrossAttnUpBlock2D->CrossAttnUpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class CrossAttnUpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1704
        transformer_layers_per_block: int = 1,
1705
1706
1707
1708
1709
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1710
        num_attention_heads=1,
1711
1712
1713
1714
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1715
        use_linear_projection=False,
1716
        only_cross_attention=False,
1717
        upcast_attention=False,
1718
        attention_type="default",
1719
1720
1721
1722
1723
    ):
        super().__init__()
        resnets = []
        attentions = []

1724
        self.has_cross_attention = True
1725
        self.num_attention_heads = num_attention_heads
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1748
1749
                        num_attention_heads,
                        out_channels // num_attention_heads,
1750
                        in_channels=out_channels,
1751
                        num_layers=transformer_layers_per_block,
1752
1753
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1754
                        use_linear_projection=use_linear_projection,
1755
                        only_cross_attention=only_cross_attention,
1756
                        upcast_attention=upcast_attention,
1757
                        attention_type=attention_type,
1758
1759
1760
1761
1762
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1763
1764
                        num_attention_heads,
                        out_channels // num_attention_heads,
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
1783
1784
1785
1786
1787
1788
1789
1790
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1791
    ):
1792
1793
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1811
1812
1813
1814
1815
1816
1817
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1818
                hidden_states = attn(
1819
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1820
1821
1822
1823
1824
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1825
                )[0]
1826
            else:
1827
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
1828
1829
1830
1831
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1832
1833
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1834
1835
                    return_dict=False,
                )[0]
1836
1837
1838

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1839
                hidden_states = upsampler(hidden_states, upsample_size, scale=lora_scale)
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DCrossAttn with UNetMidBlock2DCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1852
        transformer_layers_per_block: int = 1,
1853
1854
1855
1856
1857
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1858
        num_attention_heads=1,
1859
1860
1861
        output_scale_factor=1.0,
        cross_attention_dim=1280,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1862
        use_linear_projection=False,
1863
        upcast_attention=False,
1864
        attention_type="default",
1865
1866
1867
    ):
        super().__init__()

1868
        self.has_cross_attention = True
1869
        self.num_attention_heads = num_attention_heads
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1893
1894
                        num_attention_heads,
                        in_channels // num_attention_heads,
1895
                        in_channels=in_channels,
1896
                        num_layers=transformer_layers_per_block,
1897
1898
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1899
                        use_linear_projection=use_linear_projection,
1900
                        upcast_attention=upcast_attention,
1901
                        attention_type=attention_type,
1902
1903
1904
1905
1906
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1907
1908
                        num_attention_heads,
                        in_channels // num_attention_heads,
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1933
1934
        self.gradient_checkpointing = False

1935
    def forward(
1936
1937
1938
1939
1940
1941
1942
1943
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1944
1945
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
1946
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
1959
                hidden_states = attn(
1960
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1961
1962
1963
1964
1965
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
1982
                hidden_states = resnet(hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
1983
1984
1985
1986

        return hidden_states


1987
1988
# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatSimpleCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatSimpleCrossAttn(nn.Module):
Will Berman's avatar
Will Berman committed
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
2000
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
2001
2002
        output_scale_factor=1.0,
        cross_attention_dim=1280,
2003
        skip_time_act=False,
2004
        only_cross_attention=False,
2005
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
2006
2007
2008
2009
2010
    ):
        super().__init__()

        self.has_cross_attention = True

2011
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
2012
2013
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

2014
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
2029
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2030
2031
2032
2033
2034
            )
        ]
        attentions = []

        for _ in range(num_layers):
2035
2036
2037
2038
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
2039
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
2040
                Attention(
Will Berman's avatar
Will Berman committed
2041
2042
2043
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
2044
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
2045
2046
2047
2048
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
2049
                    only_cross_attention=only_cross_attention,
2050
                    cross_attention_norm=cross_attention_norm,
2051
                    processor=processor,
Will Berman's avatar
Will Berman committed
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
                )
            )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
2066
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
2067
2068
2069
2070
2071
2072
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2073
    def forward(
2074
2075
2076
2077
2078
2079
2080
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2081
2082
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2083
        lora_scale = cross_attention_kwargs.get("scale", 1.0)
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

2096
        hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
Will Berman's avatar
Will Berman committed
2097
2098
2099
2100
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
2101
                encoder_hidden_states=encoder_hidden_states,
2102
                attention_mask=mask,
2103
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
2104
2105
2106
            )

            # resnet
2107
            hidden_states = resnet(hidden_states, temb, scale=lora_scale)
2108
2109

        return hidden_states