modeling_text_unet.py 89.9 KB
Newer Older
1
from typing import Any, Dict, List, Optional, Tuple, Union
2
3
4
5

import numpy as np
import torch
import torch.nn as nn
6
import torch.nn.functional as F
7
8

from ...configuration_utils import ConfigMixin, register_to_config
9
from ...models import ModelMixin
10
from ...models.activations import get_activation
Patrick von Platen's avatar
Patrick von Platen committed
11
from ...models.attention import Attention
12
13
14
15
16
17
from ...models.attention_processor import (
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    AttnProcessor,
)
18
from ...models.dual_transformer_2d import DualTransformer2DModel
YiYi Xu's avatar
YiYi Xu committed
19
20
from ...models.embeddings import (
    GaussianFourierProjection,
YiYi Xu's avatar
YiYi Xu committed
21
22
23
    ImageHintTimeEmbedding,
    ImageProjection,
    ImageTimeEmbedding,
YiYi Xu's avatar
YiYi Xu committed
24
25
26
27
28
29
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
30
from ...models.transformer_2d import Transformer2DModel
31
from ...models.unet_2d_condition import UNet2DConditionOutput
32
from ...utils import is_torch_version, logging
33
34
35
36
37
38
39
40
41
42
43
44
45
46


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
47
    num_attention_heads,
48
49
50
    resnet_groups=None,
    cross_attention_dim=None,
    downsample_padding=None,
51
52
53
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
54
    upcast_attention=False,
55
    resnet_time_scale_shift="default",
56
57
58
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
59
60
61
62
63
64
65
66
67
68
69
70
71
):
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlockFlat":
        return DownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
72
            resnet_time_scale_shift=resnet_time_scale_shift,
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        )
    elif down_block_type == "CrossAttnDownBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockFlat")
        return CrossAttnDownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
88
            num_attention_heads=num_attention_heads,
89
90
91
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
92
            resnet_time_scale_shift=resnet_time_scale_shift,
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        )
    raise ValueError(f"{down_block_type} is not supported.")


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
    out_channels,
    prev_output_channel,
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
107
    num_attention_heads,
108
109
    resnet_groups=None,
    cross_attention_dim=None,
110
111
112
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
113
    upcast_attention=False,
114
    resnet_time_scale_shift="default",
115
116
117
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
118
119
120
121
122
123
124
125
126
127
128
129
130
):
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlockFlat":
        return UpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
131
            resnet_time_scale_shift=resnet_time_scale_shift,
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
        )
    elif up_block_type == "CrossAttnUpBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockFlat")
        return CrossAttnUpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
147
            num_attention_heads=num_attention_heads,
148
149
150
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
151
            resnet_time_scale_shift=resnet_time_scale_shift,
152
153
154
155
        )
    raise ValueError(f"{up_block_type} is not supported.")


156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
class FourierEmbedder(nn.Module):
    def __init__(self, num_freqs=64, temperature=100):
        super().__init__()

        self.num_freqs = num_freqs
        self.temperature = temperature

        freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs)
        freq_bands = freq_bands[None, None, None]
        self.register_buffer("freq_bands", freq_bands, persistent=False)

    def __call__(self, x):
        x = self.freq_bands * x.unsqueeze(-1)
        return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1)


class PositionNet(nn.Module):
    def __init__(self, positive_len, out_dim, fourier_freqs=8):
        super().__init__()
        self.positive_len = positive_len
        self.out_dim = out_dim

        self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
        self.position_dim = fourier_freqs * 2 * 4  # 2: sin/cos, 4: xyxy

        if isinstance(out_dim, tuple):
            out_dim = out_dim[0]
        self.linears = nn.Sequential(
            nn.Linear(self.positive_len + self.position_dim, 512),
            nn.SiLU(),
            nn.Linear(512, 512),
            nn.SiLU(),
            nn.Linear(512, out_dim),
        )

        self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
        self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))

    def forward(self, boxes, masks, positive_embeddings):
        masks = masks.unsqueeze(-1)

        # embedding position (it may includes padding as placeholder)
        xyxy_embedding = self.fourier_embedder(boxes)  # B*N*4 -> B*N*C

        # learnable null embedding
        positive_null = self.null_positive_feature.view(1, 1, -1)
        xyxy_null = self.null_position_feature.view(1, 1, -1)

        # replace padding with learnable null embedding
        positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
        xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null

        objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
        return objs


212
213
214
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel with UNet2DConditionModel->UNetFlatConditionModel, nn.Conv2d->LinearMultiDim, Block2D->BlockFlat
class UNetFlatConditionModel(ModelMixin, ConfigMixin):
    r"""
Steven Liu's avatar
Steven Liu committed
215
216
    A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
    shaped output.
217

Steven Liu's avatar
Steven Liu committed
218
219
    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
220
221
222
223

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
Steven Liu's avatar
Steven Liu committed
224
225
        in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
226
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
227
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
228
229
230
231
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
232
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlockFlatCrossAttn"`):
Steven Liu's avatar
Steven Liu committed
233
234
235
            Block type for middle of UNet, it can be either `UNetMidBlockFlatCrossAttn` or
            `UNetMidBlockFlatSimpleCrossAttn`. If `None`, the mid block layer is skipped.
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat")`):
236
            The tuple of upsample blocks to use.
237
238
239
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
240
241
242
243
244
245
246
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
Steven Liu's avatar
Steven Liu committed
247
            If `None`, normalization and activation layers is skipped in post-processing.
248
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
249
250
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
251
252
253
254
255
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlockFlat`], [`~models.unet_2d_blocks.CrossAttnUpBlockFlat`],
            [`~models.unet_2d_blocks.UNetMidBlockFlatCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
256
257
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
Steven Liu's avatar
Steven Liu committed
258
259
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
YiYi Xu's avatar
YiYi Xu committed
260
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
261
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
262
263
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
264
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
Steven Liu's avatar
Steven Liu committed
265
266
            for ResNet blocks (see [`~models.resnet.ResnetBlockFlat`]). Choose from `default` or `scale_shift`.
        class_embed_type (`str`, *optional*, defaults to `None`):
267
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
268
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Steven Liu's avatar
Steven Liu committed
269
        addition_embed_type (`str`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
270
271
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
272
273
        addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
            Dimension for the timestep embeddings.
Steven Liu's avatar
Steven Liu committed
274
        num_class_embeds (`int`, *optional*, defaults to `None`):
275
276
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
Steven Liu's avatar
Steven Liu committed
277
        time_embedding_type (`str`, *optional*, defaults to `positional`):
278
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Steven Liu's avatar
Steven Liu committed
279
        time_embedding_dim (`int`, *optional*, defaults to `None`):
Patrick von Platen's avatar
Patrick von Platen committed
280
            An optional override for the dimension of the projected time embedding.
Steven Liu's avatar
Steven Liu committed
281
282
283
284
        time_embedding_act_fn (`str`, *optional*, defaults to `None`):
            Optional activation function to use only once on the time embeddings before they are passed to the rest of
            the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
        timestep_post_act (`str`, *optional*, defaults to `None`):
285
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
Steven Liu's avatar
Steven Liu committed
286
287
        time_cond_proj_dim (`int`, *optional*, defaults to `None`):
            The dimension of `cond_proj` layer in the timestep embedding.
288
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
289
290
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
Steven Liu's avatar
Steven Liu committed
291
            `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
292
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
293
294
295
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlockFlatSimpleCrossAttn`. If
Steven Liu's avatar
Steven Liu committed
296
297
298
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
            `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
            otherwise.
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "DownBlockFlat",
        ),
318
        mid_block_type: Optional[str] = "UNetMidBlockFlatCrossAttn",
319
320
321
322
323
324
        up_block_types: Tuple[str] = (
            "UpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
        ),
325
        only_cross_attention: Union[bool, Tuple[bool]] = False,
326
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
327
        layers_per_block: Union[int, Tuple[int]] = 2,
328
329
330
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
331
        norm_num_groups: Optional[int] = 32,
332
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
333
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
334
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
William Berman's avatar
William Berman committed
335
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
336
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
337
        attention_head_dim: Union[int, Tuple[int]] = 8,
338
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
339
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
340
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
341
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
342
        addition_embed_type: Optional[str] = None,
343
        addition_time_embed_dim: Optional[int] = None,
344
        num_class_embeds: Optional[int] = None,
345
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
346
        resnet_time_scale_shift: str = "default",
347
348
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
349
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
350
        time_embedding_dim: Optional[int] = None,
351
        time_embedding_act_fn: Optional[str] = None,
352
353
354
355
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
356
        projection_class_embeddings_input_dim: Optional[int] = None,
357
        attention_type: str = "default",
Sanchit Gandhi's avatar
Sanchit Gandhi committed
358
        class_embeddings_concat: bool = False,
359
        mid_block_only_cross_attention: Optional[bool] = None,
360
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
361
        addition_embed_type_num_heads=64,
362
363
364
365
366
    ):
        super().__init__()

        self.sample_size = sample_size

367
368
369
370
371
372
373
374
        if num_attention_heads is not None:
            raise ValueError(
                "At the moment it is not possible to define the number of attention heads via `num_attention_heads`"
                " because of a naming issue as described in"
                " https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing"
                " `num_attention_heads` will only be supported in diffusers v0.19."
            )

375
376
377
378
379
380
381
382
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                "Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`:"
                f" {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`:"
                f" {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `only_cross_attention` as `down_block_types`."
                f" `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

402
403
404
405
406
407
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`:"
                f" {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
408
409
410
411
412
413
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`:"
                f" {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
414
415
416
417
418
419
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`:"
                f" {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

420
421
422
423
424
425
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`:"
                f" {layers_per_block}. `down_block_types`: {down_block_types}."
            )

426
        # input
427
428
429
430
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = LinearMultiDim(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
431
432

        # time
433
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
434
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
435
436
437
438
439
440
441
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
442
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
443
444
445
446
447

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
448
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
449
            )
450

451
452
453
454
455
456
457
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
458

YiYi Xu's avatar
YiYi Xu committed
459
460
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
461
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
462
463
464
465
466
467
468
469
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
470
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
471
472
473
474
475
476
477
478
479
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
480
481
482
483
484
485
        elif encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2
            self.encoder_hid_proj = ImageProjection(
                image_embed_dim=encoder_hid_dim,
                cross_attention_dim=cross_attention_dim,
            )
YiYi Xu's avatar
YiYi Xu committed
486
487
488
489
        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
490
491
492
        else:
            self.encoder_hid_proj = None

493
        # class embedding
Will Berman's avatar
Will Berman committed
494
        if class_embed_type is None and num_class_embeds is not None:
495
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
496
        elif class_embed_type == "timestep":
497
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
498
499
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
500
501
502
503
504
505
506
507
508
509
510
511
512
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
513
514
515
516
517
518
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
519
520
        else:
            self.class_embedding = None
521

Patrick von Platen's avatar
Patrick von Platen committed
522
523
524
525
526
527
528
529
530
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
531
532
533
534
535
536
537
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
538
539
540
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
            self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
YiYi Xu's avatar
YiYi Xu committed
541
542
543
544
545
546
        elif addition_embed_type == "image":
            # Kandinsky 2.2
            self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
        elif addition_embed_type == "image_hint":
            # Kandinsky 2.2 ControlNet
            self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
Patrick von Platen's avatar
Patrick von Platen committed
547
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
548
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
549

550
551
552
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
553
            self.time_embed_act = get_activation(time_embedding_act_fn)
554

555
556
557
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

558
        if isinstance(only_cross_attention, bool):
559
560
561
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

562
563
            only_cross_attention = [only_cross_attention] * len(down_block_types)

564
565
566
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

567
568
569
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
570
571
572
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
573
574
575
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

576
577
578
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

579
580
581
        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
582
583
584
585
586
587
588
589
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

590
591
592
593
594
595
596
597
598
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
599
                num_layers=layers_per_block[i],
600
                transformer_layers_per_block=transformer_layers_per_block[i],
601
602
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
603
                temb_channels=blocks_time_embed_dim,
604
605
606
607
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
608
                cross_attention_dim=cross_attention_dim[i],
609
                num_attention_heads=num_attention_heads[i],
610
611
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
612
                use_linear_projection=use_linear_projection,
613
                only_cross_attention=only_cross_attention[i],
614
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
615
                resnet_time_scale_shift=resnet_time_scale_shift,
616
                attention_type=attention_type,
617
618
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
619
                cross_attention_norm=cross_attention_norm,
620
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
621
622
623
624
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
625
626
        if mid_block_type == "UNetMidBlockFlatCrossAttn":
            self.mid_block = UNetMidBlockFlatCrossAttn(
627
                transformer_layers_per_block=transformer_layers_per_block[-1],
Will Berman's avatar
Will Berman committed
628
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
629
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
630
631
632
633
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
634
                cross_attention_dim=cross_attention_dim[-1],
635
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
636
637
638
639
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
640
                attention_type=attention_type,
Will Berman's avatar
Will Berman committed
641
642
643
644
            )
        elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn":
            self.mid_block = UNetMidBlockFlatSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
645
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
646
647
648
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
649
                cross_attention_dim=cross_attention_dim[-1],
650
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
651
652
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
653
                skip_time_act=resnet_skip_time_act,
654
                only_cross_attention=mid_block_only_cross_attention,
655
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
656
            )
657
658
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
659
660
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
661
662
663
664
665
666

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
667
        reversed_num_attention_heads = list(reversed(num_attention_heads))
668
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
669
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
670
        reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
671
        only_cross_attention = list(reversed(only_cross_attention))
672

673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
690
                num_layers=reversed_layers_per_block[i] + 1,
691
                transformer_layers_per_block=reversed_transformer_layers_per_block[i],
692
693
694
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
695
                temb_channels=blocks_time_embed_dim,
696
697
698
699
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
700
                cross_attention_dim=reversed_cross_attention_dim[i],
701
                num_attention_heads=reversed_num_attention_heads[i],
702
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
703
                use_linear_projection=use_linear_projection,
704
                only_cross_attention=only_cross_attention[i],
705
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
706
                resnet_time_scale_shift=resnet_time_scale_shift,
707
                attention_type=attention_type,
708
709
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
710
                cross_attention_norm=cross_attention_norm,
711
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
712
713
714
715
716
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
717
718
719
720
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
721

722
            self.conv_act = get_activation(act_fn)
723

724
725
726
727
728
729
730
731
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = LinearMultiDim(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
732

733
734
735
736
737
738
739
740
        if attention_type == "gated":
            positive_len = 768
            if isinstance(cross_attention_dim, int):
                positive_len = cross_attention_dim
            elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
                positive_len = cross_attention_dim[0]
            self.position_net = PositionNet(positive_len=positive_len, out_dim=cross_attention_dim)

741
    @property
Patrick von Platen's avatar
Patrick von Platen committed
742
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
743
744
745
746
747
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
748
        # set recursively
749
750
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
751
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
752
753
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
754
755
756
757
758
759
760
761
762
763
764

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
765
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
766
        r"""
Steven Liu's avatar
Steven Liu committed
767
768
        Sets the attention processor to use to compute attention.

769
        Parameters:
Steven Liu's avatar
Steven Liu committed
770
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
771
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Steven Liu's avatar
Steven Liu committed
772
773
774
775
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.
776
777
778
779
780
781
782
783
784
785
786

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
787
            if hasattr(module, "set_processor"):
788
789
790
791
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
792

793
794
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
795

796
797
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
798

799
800
801
802
803
804
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

805
    def set_attention_slice(self, slice_size):
806
807
808
        r"""
        Enable sliced attention computation.

Steven Liu's avatar
Steven Liu committed
809
810
        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.
811
812

        Args:
Patrick von Platen's avatar
Patrick von Platen committed
813
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
Steven Liu's avatar
Steven Liu committed
814
815
816
817
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
818
819
820
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
821
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
822
823
824
825
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
826
                fn_recursive_retrieve_sliceable_dims(child)
827
828
829

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
830
            fn_recursive_retrieve_sliceable_dims(module)
831

Alexander Pivovarov's avatar
Alexander Pivovarov committed
832
        num_sliceable_layers = len(sliceable_head_dims)
833
834
835
836
837
838
839

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
840
            slice_size = num_sliceable_layers * [1]
841

Alexander Pivovarov's avatar
Alexander Pivovarov committed
842
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
843
844

        if len(slice_size) != len(sliceable_head_dims):
845
            raise ValueError(
846
847
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
848
849
            )

850
851
852
853
854
855
856
857
858
859
860
861
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())
862

863
864
            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)
865

866
867
868
        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
869
870

    def _set_gradient_checkpointing(self, module, value=False):
871
        if hasattr(module, "gradient_checkpointing"):
872
873
874
875
876
877
878
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
879
        class_labels: Optional[torch.Tensor] = None,
880
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
881
        attention_mask: Optional[torch.Tensor] = None,
882
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
883
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
884
885
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
886
        encoder_attention_mask: Optional[torch.Tensor] = None,
887
888
889
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
Steven Liu's avatar
Steven Liu committed
890
891
        The [`UNetFlatConditionModel`] forward method.

892
        Args:
Steven Liu's avatar
Steven Liu committed
893
894
895
896
897
            sample (`torch.FloatTensor`):
                The noisy input tensor with the following shape `(batch, channel, height, width)`.
            timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.FloatTensor`):
                The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
898
            encoder_attention_mask (`torch.Tensor`):
Steven Liu's avatar
Steven Liu committed
899
900
901
                A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
                `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
                which adds large negative values to the attention scores corresponding to "discard" tokens.
902
            return_dict (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
903
904
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.
905
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
906
                A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
907
908
909
            added_cond_kwargs: (`dict`, *optional*):
                A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
                are passed along to the UNet blocks.
910
911
912

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
913
914
                If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
                a `tuple` is returned where the first element is the sample tensor.
915
916
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
917
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
918
919
920
921
922
923
924
925
926
927
928
929
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

930
931
932
933
934
935
936
937
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
938
        if attention_mask is not None:
939
940
941
942
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
943
944
945
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

946
947
948
949
950
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

951
952
953
954
955
956
957
958
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
959
960
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
961
            if isinstance(timestep, float):
962
963
964
965
966
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
967
968
969
970
971
972
973
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

974
        # `Timesteps` does not contain any weights and will always return f32 tensors
975
976
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
977
        t_emb = t_emb.to(dtype=sample.dtype)
978
979

        emb = self.time_embedding(t_emb, timestep_cond)
980
        aug_emb = None
981

Will Berman's avatar
Will Berman committed
982
        if self.class_embedding is not None:
983
984
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
985
986
987
988

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

989
990
991
992
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

993
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
994
995
996
997
998

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
999

Patrick von Platen's avatar
Patrick von Platen committed
1000
1001
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1002
        elif self.config.addition_embed_type == "text_image":
YiYi Xu's avatar
YiYi Xu committed
1003
            # Kandinsky 2.1 - style
YiYi Xu's avatar
YiYi Xu committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires"
                    " the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
            aug_emb = self.add_embedding(text_embs, image_embs)
1013
        elif self.config.addition_embed_type == "text_time":
1014
            # SDXL - style
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
            if "text_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
                    " the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                )
            text_embeds = added_cond_kwargs.get("text_embeds")
            if "time_ids" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires"
                    " the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                )
            time_ids = added_cond_kwargs.get("time_ids")
            time_embeds = self.add_time_proj(time_ids.flatten())
            time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

            add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
            add_embeds = add_embeds.to(emb.dtype)
            aug_emb = self.add_embedding(add_embeds)
YiYi Xu's avatar
YiYi Xu committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
        elif self.config.addition_embed_type == "image":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the"
                    " keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            aug_emb = self.add_embedding(image_embs)
        elif self.config.addition_embed_type == "image_hint":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires"
                    " the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
                )
            image_embs = added_cond_kwargs.get("image_embeds")
            hint = added_cond_kwargs.get("hint")
            aug_emb, hint = self.add_embedding(image_embs, hint)
            sample = torch.cat([sample, hint], dim=1)
1053
1054

        emb = emb + aug_emb if aug_emb is not None else emb
Patrick von Platen's avatar
Patrick von Platen committed
1055

1056
1057
1058
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
1059
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
1060
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which"
                    " requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
YiYi Xu's avatar
YiYi Xu committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
            # Kandinsky 2.2 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires"
                    " the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )
            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1080
1081
1082
        # 2. pre-process
        sample = self.conv_in(sample)

1083
1084
1085
1086
1087
1088
        # 2.5 GLIGEN position net
        if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
            cross_attention_kwargs = cross_attention_kwargs.copy()
            gligen_args = cross_attention_kwargs.pop("gligen")
            cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}

1089
        # 3. down
Will Berman's avatar
Will Berman committed
1090
1091
1092
1093

        is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
        is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None

1094
1095
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
1096
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
Will Berman's avatar
Will Berman committed
1097
1098
1099
1100
1101
                # For t2i-adapter CrossAttnDownBlockFlat
                additional_residuals = {}
                if is_adapter and len(down_block_additional_residuals) > 0:
                    additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)

1102
1103
1104
1105
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
1106
                    attention_mask=attention_mask,
1107
                    cross_attention_kwargs=cross_attention_kwargs,
1108
                    encoder_attention_mask=encoder_attention_mask,
Will Berman's avatar
Will Berman committed
1109
                    **additional_residuals,
1110
1111
1112
1113
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

Will Berman's avatar
Will Berman committed
1114
1115
1116
                if is_adapter and len(down_block_additional_residuals) > 0:
                    sample += down_block_additional_residuals.pop(0)

1117
1118
            down_block_res_samples += res_samples

Will Berman's avatar
Will Berman committed
1119
        if is_controlnet:
1120
1121
1122
1123
1124
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
1125
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
1126
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1127
1128
1129

            down_block_res_samples = new_down_block_res_samples

1130
        # 4. mid
1131
1132
1133
1134
1135
1136
1137
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
1138
                encoder_attention_mask=encoder_attention_mask,
1139
            )
1140

Will Berman's avatar
Will Berman committed
1141
        if is_controlnet:
1142
            sample = sample + mid_block_additional_residual
1143

1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

1156
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1157
1158
1159
1160
1161
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
1162
                    cross_attention_kwargs=cross_attention_kwargs,
1163
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
1164
                    attention_mask=attention_mask,
1165
                    encoder_attention_mask=encoder_attention_mask,
1166
1167
1168
1169
1170
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
1171

1172
        # 6. post-process
1173
1174
1175
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)


class LinearMultiDim(nn.Linear):
    def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs):
        in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features)
        if out_features is None:
            out_features = in_features
        out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features)
        self.in_features_multidim = in_features
        self.out_features_multidim = out_features
        super().__init__(np.array(in_features).prod(), np.array(out_features).prod())

    def forward(self, input_tensor, *args, **kwargs):
        shape = input_tensor.shape
        n_dim = len(self.in_features_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features)
        output_tensor = super().forward(input_tensor)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim)
        return output_tensor


class ResnetBlockFlat(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        time_embedding_norm="default",
        use_in_shortcut=None,
        second_dim=4,
        **kwargs,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True

        in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels)
        self.in_channels_prod = np.array(in_channels).prod()
        self.channels_multidim = in_channels

        if out_channels is not None:
            out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels)
            out_channels_prod = np.array(out_channels).prod()
            self.out_channels_multidim = out_channels
        else:
            out_channels_prod = self.in_channels_prod
            self.out_channels_multidim = self.channels_multidim
        self.time_embedding_norm = time_embedding_norm

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True)
        self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        if temb_channels is not None:
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod)
        else:
            self.time_emb_proj = None

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        self.nonlinearity = nn.SiLU()

        self.use_in_shortcut = (
            self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut
        )

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = torch.nn.Conv2d(
                self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0
            )

    def forward(self, input_tensor, temb):
        shape = input_tensor.shape
        n_dim = len(self.channels_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1)
        input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1)

        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        if temb is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
            hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden_states

        output_tensor = output_tensor.view(*shape[0:-n_dim], -1)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim)

        return output_tensor


# Copied from diffusers.models.unet_2d_blocks.DownBlock2D with DownBlock2D->DownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class DownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1362
1363
1364
1365
1366
1367
1368
1369
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1370
1371
1372
            else:
                hidden_states = resnet(hidden_states, temb)

1373
            output_states = output_states + (hidden_states,)
1374
1375
1376
1377
1378

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1379
            output_states = output_states + (hidden_states,)
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D with CrossAttnDownBlock2D->CrossAttnDownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class CrossAttnDownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1393
        transformer_layers_per_block: int = 1,
1394
1395
1396
1397
1398
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1399
        num_attention_heads=1,
1400
1401
1402
1403
1404
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1405
        use_linear_projection=False,
1406
        only_cross_attention=False,
1407
        upcast_attention=False,
1408
        attention_type="default",
1409
1410
1411
1412
1413
    ):
        super().__init__()
        resnets = []
        attentions = []

1414
        self.has_cross_attention = True
1415
        self.num_attention_heads = num_attention_heads
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1436
1437
                        num_attention_heads,
                        out_channels // num_attention_heads,
1438
                        in_channels=out_channels,
1439
                        num_layers=transformer_layers_per_block,
1440
1441
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1442
                        use_linear_projection=use_linear_projection,
1443
                        only_cross_attention=only_cross_attention,
1444
                        upcast_attention=upcast_attention,
1445
                        attention_type=attention_type,
1446
1447
1448
1449
1450
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1451
1452
                        num_attention_heads,
                        out_channels // num_attention_heads,
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1475
    def forward(
1476
1477
1478
1479
1480
1481
1482
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
Will Berman's avatar
Will Berman committed
1483
        additional_residuals=None,
1484
    ):
1485
1486
        output_states = ()

Will Berman's avatar
Will Berman committed
1487
1488
1489
        blocks = list(zip(self.resnets, self.attentions))

        for i, (resnet, attn) in enumerate(blocks):
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1501
1502
1503
1504
1505
1506
1507
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1508
                hidden_states = attn(
1509
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1510
1511
1512
1513
1514
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1515
                )[0]
1516
1517
            else:
                hidden_states = resnet(hidden_states, temb)
1518
1519
1520
1521
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1522
1523
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1524
1525
                    return_dict=False,
                )[0]
1526

Will Berman's avatar
Will Berman committed
1527
1528
1529
1530
            # apply additional residuals to the output of the last pair of resnet and attention blocks
            if i == len(blocks) - 1 and additional_residuals is not None:
                hidden_states = hidden_states + additional_residuals

1531
            output_states = output_states + (hidden_states,)
1532
1533
1534
1535
1536

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1537
            output_states = output_states + (hidden_states,)
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.UpBlock2D with UpBlock2D->UpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class UpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1606
1607
1608
1609
1610
1611
1612
1613
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D with CrossAttnUpBlock2D->CrossAttnUpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class CrossAttnUpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1634
        transformer_layers_per_block: int = 1,
1635
1636
1637
1638
1639
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1640
        num_attention_heads=1,
1641
1642
1643
1644
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1645
        use_linear_projection=False,
1646
        only_cross_attention=False,
1647
        upcast_attention=False,
1648
        attention_type="default",
1649
1650
1651
1652
1653
    ):
        super().__init__()
        resnets = []
        attentions = []

1654
        self.has_cross_attention = True
1655
        self.num_attention_heads = num_attention_heads
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1678
1679
                        num_attention_heads,
                        out_channels // num_attention_heads,
1680
                        in_channels=out_channels,
1681
                        num_layers=transformer_layers_per_block,
1682
1683
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1684
                        use_linear_projection=use_linear_projection,
1685
                        only_cross_attention=only_cross_attention,
1686
                        upcast_attention=upcast_attention,
1687
                        attention_type=attention_type,
1688
1689
1690
1691
1692
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1693
1694
                        num_attention_heads,
                        out_channels // num_attention_heads,
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
1713
1714
1715
1716
1717
1718
1719
1720
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
    ):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1739
1740
1741
1742
1743
1744
1745
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
ethansmith2000's avatar
ethansmith2000 committed
1746
                hidden_states = attn(
1747
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1748
1749
1750
1751
1752
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1753
                )[0]
1754
1755
            else:
                hidden_states = resnet(hidden_states, temb)
1756
1757
1758
1759
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1760
1761
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1762
1763
                    return_dict=False,
                )[0]
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DCrossAttn with UNetMidBlock2DCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
1780
        transformer_layers_per_block: int = 1,
1781
1782
1783
1784
1785
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1786
        num_attention_heads=1,
1787
1788
1789
        output_scale_factor=1.0,
        cross_attention_dim=1280,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1790
        use_linear_projection=False,
1791
        upcast_attention=False,
1792
        attention_type="default",
1793
1794
1795
    ):
        super().__init__()

1796
        self.has_cross_attention = True
1797
        self.num_attention_heads = num_attention_heads
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1821
1822
                        num_attention_heads,
                        in_channels // num_attention_heads,
1823
                        in_channels=in_channels,
1824
                        num_layers=transformer_layers_per_block,
1825
1826
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1827
                        use_linear_projection=use_linear_projection,
1828
                        upcast_attention=upcast_attention,
1829
                        attention_type=attention_type,
1830
1831
1832
1833
1834
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1835
1836
                        num_attention_heads,
                        in_channels // num_attention_heads,
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1861
1862
        self.gradient_checkpointing = False

1863
    def forward(
1864
1865
1866
1867
1868
1869
1870
1871
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1872
1873
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
ethansmith2000's avatar
ethansmith2000 committed
1886
                hidden_states = attn(
1887
                    hidden_states,
ethansmith2000's avatar
ethansmith2000 committed
1888
1889
1890
1891
1892
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
                )[0]
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
            else:
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
1910
1911
1912
1913

        return hidden_states


1914
1915
# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatSimpleCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatSimpleCrossAttn(nn.Module):
Will Berman's avatar
Will Berman committed
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1927
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1928
1929
        output_scale_factor=1.0,
        cross_attention_dim=1280,
1930
        skip_time_act=False,
1931
        only_cross_attention=False,
1932
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1933
1934
1935
1936
1937
    ):
        super().__init__()

        self.has_cross_attention = True

1938
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
1939
1940
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

1941
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1956
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1957
1958
1959
1960
1961
            )
        ]
        attentions = []

        for _ in range(num_layers):
1962
1963
1964
1965
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1966
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1967
                Attention(
Will Berman's avatar
Will Berman committed
1968
1969
1970
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
1971
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
1972
1973
1974
1975
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1976
                    only_cross_attention=only_cross_attention,
1977
                    cross_attention_norm=cross_attention_norm,
1978
                    processor=processor,
Will Berman's avatar
Will Berman committed
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
                )
            )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1993
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1994
1995
1996
1997
1998
1999
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

2000
    def forward(
2001
2002
2003
2004
2005
2006
2007
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
2008
2009
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
2022
2023
2024
2025
2026
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
2027
                encoder_hidden_states=encoder_hidden_states,
2028
                attention_mask=mask,
2029
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
2030
2031
2032
            )

            # resnet
2033
2034
2035
            hidden_states = resnet(hidden_states, temb)

        return hidden_states