modeling_text_unet.py 79 KB
Newer Older
1
from typing import Any, Dict, List, Optional, Tuple, Union
2
3
4
5

import numpy as np
import torch
import torch.nn as nn
6
import torch.nn.functional as F
7
8

from ...configuration_utils import ConfigMixin, register_to_config
9
from ...models import ModelMixin
10
from ...models.activations import get_activation
Patrick von Platen's avatar
Patrick von Platen committed
11
from ...models.attention import Attention
12
13
14
15
16
17
from ...models.attention_processor import (
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnAddedKVProcessor2_0,
    AttnProcessor,
)
18
from ...models.dual_transformer_2d import DualTransformer2DModel
YiYi Xu's avatar
YiYi Xu committed
19
20
21
22
23
24
25
26
from ...models.embeddings import (
    GaussianFourierProjection,
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
27
from ...models.transformer_2d import Transformer2DModel
28
from ...models.unet_2d_condition import UNet2DConditionOutput
29
from ...utils import is_torch_version, logging
30
31
32
33
34
35
36
37
38
39
40
41
42
43


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
44
    num_attention_heads,
45
46
47
    resnet_groups=None,
    cross_attention_dim=None,
    downsample_padding=None,
48
49
50
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
51
    upcast_attention=False,
52
    resnet_time_scale_shift="default",
53
54
55
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
56
57
58
59
60
61
62
63
64
65
66
67
68
):
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlockFlat":
        return DownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
69
            resnet_time_scale_shift=resnet_time_scale_shift,
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        )
    elif down_block_type == "CrossAttnDownBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockFlat")
        return CrossAttnDownBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            cross_attention_dim=cross_attention_dim,
85
            num_attention_heads=num_attention_heads,
86
87
88
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
89
            resnet_time_scale_shift=resnet_time_scale_shift,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
        )
    raise ValueError(f"{down_block_type} is not supported.")


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
    out_channels,
    prev_output_channel,
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
104
    num_attention_heads,
105
106
    resnet_groups=None,
    cross_attention_dim=None,
107
108
109
    dual_cross_attention=False,
    use_linear_projection=False,
    only_cross_attention=False,
110
    upcast_attention=False,
111
    resnet_time_scale_shift="default",
112
113
114
    resnet_skip_time_act=False,
    resnet_out_scale_factor=1.0,
    cross_attention_norm=None,
115
116
117
118
119
120
121
122
123
124
125
126
127
):
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlockFlat":
        return UpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
128
            resnet_time_scale_shift=resnet_time_scale_shift,
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        )
    elif up_block_type == "CrossAttnUpBlockFlat":
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockFlat")
        return CrossAttnUpBlockFlat(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            cross_attention_dim=cross_attention_dim,
144
            num_attention_heads=num_attention_heads,
145
146
147
            dual_cross_attention=dual_cross_attention,
            use_linear_projection=use_linear_projection,
            only_cross_attention=only_cross_attention,
148
            resnet_time_scale_shift=resnet_time_scale_shift,
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        )
    raise ValueError(f"{up_block_type} is not supported.")


# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel with UNet2DConditionModel->UNetFlatConditionModel, nn.Conv2d->LinearMultiDim, Block2D->BlockFlat
class UNetFlatConditionModel(ModelMixin, ConfigMixin):
    r"""
    UNetFlatConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a
    timestep and returns sample shaped output.

    This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
    implements for all the models (such as downloading or saving, etc.)

    Parameters:
        sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
            Height and width of input/output sample.
        in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
        out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
        center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
Suraj Patil's avatar
Suraj Patil committed
168
        flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
169
170
171
172
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
        down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "CrossAttnDownBlockFlat", "DownBlockFlat")`):
            The tuple of downsample blocks to use.
Will Berman's avatar
Will Berman committed
173
        mid_block_type (`str`, *optional*, defaults to `"UNetMidBlockFlatCrossAttn"`):
174
175
            The mid block type. Choose from `UNetMidBlockFlatCrossAttn` or `UNetMidBlockFlatSimpleCrossAttn`, will skip
            the mid block layer if `None`.
176
177
        up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat", "CrossAttnUpBlockFlat",)`):
            The tuple of upsample blocks to use.
178
179
180
        only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
            Whether to include self-attention in the basic transformer blocks, see
            [`~models.attention.BasicTransformerBlock`].
181
182
183
184
185
186
187
        block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
        downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
        act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
188
            If `None`, it will skip the normalization and activation layers in post-processing
189
        norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
190
191
        cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
            The dimension of the cross attention features.
William Berman's avatar
William Berman committed
192
        encoder_hid_dim (`int`, *optional*, defaults to None):
YiYi Xu's avatar
YiYi Xu committed
193
194
195
196
197
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to None):
            If given, the `encoder_hidden_states` and potentially other embeddings will be down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
198
        attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
199
200
        num_attention_heads (`int`, *optional*):
            The number of attention heads. If not defined, defaults to `attention_head_dim`
Will Berman's avatar
Will Berman committed
201
202
        resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
            for resnet blocks, see [`~models.resnet.ResnetBlockFlat`]. Choose from `default` or `scale_shift`.
203
204
        class_embed_type (`str`, *optional*, defaults to None):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
205
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
        addition_embed_type (`str`, *optional*, defaults to None):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
209
210
211
        num_class_embeds (`int`, *optional*, defaults to None):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
212
213
        time_embedding_type (`str`, *optional*, default to `positional`):
            The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
Patrick von Platen's avatar
Patrick von Platen committed
214
215
        time_embedding_dim (`int`, *optional*, default to `None`):
            An optional override for the dimension of the projected time embedding.
216
217
218
        time_embedding_act_fn (`str`, *optional*, default to `None`):
            Optional activation function to use on the time embeddings only one time before they as passed to the rest
            of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`.
219
220
221
222
223
        timestep_post_act (`str, *optional*, default to `None`):
            The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
        time_cond_proj_dim (`int`, *optional*, default to `None`):
            The dimension of `cond_proj` layer in timestep embedding.
        conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
Will Berman's avatar
Will Berman committed
224
225
226
        conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
        projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
            using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
227
        class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
228
229
230
231
232
233
            embeddings with the class embeddings.
        mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
            Whether to use cross attention with the mid block when using the `UNetMidBlockFlatSimpleCrossAttn`. If
            `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the
            `only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will
            default to `False`.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        sample_size: Optional[int] = None,
        in_channels: int = 4,
        out_channels: int = 4,
        center_input_sample: bool = False,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "CrossAttnDownBlockFlat",
            "DownBlockFlat",
        ),
253
        mid_block_type: Optional[str] = "UNetMidBlockFlatCrossAttn",
254
255
256
257
258
259
        up_block_types: Tuple[str] = (
            "UpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
            "CrossAttnUpBlockFlat",
        ),
260
        only_cross_attention: Union[bool, Tuple[bool]] = False,
261
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
262
        layers_per_block: Union[int, Tuple[int]] = 2,
263
264
265
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
266
        norm_num_groups: Optional[int] = 32,
267
        norm_eps: float = 1e-5,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
268
        cross_attention_dim: Union[int, Tuple[int]] = 1280,
William Berman's avatar
William Berman committed
269
        encoder_hid_dim: Optional[int] = None,
YiYi Xu's avatar
YiYi Xu committed
270
        encoder_hid_dim_type: Optional[str] = None,
Suraj Patil's avatar
Suraj Patil committed
271
        attention_head_dim: Union[int, Tuple[int]] = 8,
272
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
273
        dual_cross_attention: bool = False,
Suraj Patil's avatar
Suraj Patil committed
274
        use_linear_projection: bool = False,
Will Berman's avatar
Will Berman committed
275
        class_embed_type: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
276
        addition_embed_type: Optional[str] = None,
277
        num_class_embeds: Optional[int] = None,
278
        upcast_attention: bool = False,
Will Berman's avatar
Will Berman committed
279
        resnet_time_scale_shift: str = "default",
280
281
        resnet_skip_time_act: bool = False,
        resnet_out_scale_factor: int = 1.0,
282
        time_embedding_type: str = "positional",
Patrick von Platen's avatar
Patrick von Platen committed
283
        time_embedding_dim: Optional[int] = None,
284
        time_embedding_act_fn: Optional[str] = None,
285
286
287
288
        timestep_post_act: Optional[str] = None,
        time_cond_proj_dim: Optional[int] = None,
        conv_in_kernel: int = 3,
        conv_out_kernel: int = 3,
Will Berman's avatar
Will Berman committed
289
        projection_class_embeddings_input_dim: Optional[int] = None,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
290
        class_embeddings_concat: bool = False,
291
        mid_block_only_cross_attention: Optional[bool] = None,
292
        cross_attention_norm: Optional[str] = None,
Patrick von Platen's avatar
Patrick von Platen committed
293
        addition_embed_type_num_heads=64,
294
295
296
297
298
    ):
        super().__init__()

        self.sample_size = sample_size

299
300
301
302
303
304
305
306
        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

Will Berman's avatar
Will Berman committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
        # Check inputs
        if len(down_block_types) != len(up_block_types):
            raise ValueError(
                "Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`:"
                f" {down_block_types}. `up_block_types`: {up_block_types}."
            )

        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`:"
                f" {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `only_cross_attention` as `down_block_types`."
                f" `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

326
327
328
329
330
331
        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`:"
                f" {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

Will Berman's avatar
Will Berman committed
332
333
334
335
336
337
        if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`:"
                f" {attention_head_dim}. `down_block_types`: {down_block_types}."
            )

Sanchit Gandhi's avatar
Sanchit Gandhi committed
338
339
340
341
342
343
        if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`:"
                f" {cross_attention_dim}. `down_block_types`: {down_block_types}."
            )

344
345
346
347
348
349
        if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
            raise ValueError(
                "Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`:"
                f" {layers_per_block}. `down_block_types`: {down_block_types}."
            )

350
        # input
351
352
353
354
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = LinearMultiDim(
            in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
        )
355
356

        # time
357
        if time_embedding_type == "fourier":
Patrick von Platen's avatar
Patrick von Platen committed
358
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
359
360
361
362
363
364
365
            if time_embed_dim % 2 != 0:
                raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
            self.time_proj = GaussianFourierProjection(
                time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
            )
            timestep_input_dim = time_embed_dim
        elif time_embedding_type == "positional":
Patrick von Platen's avatar
Patrick von Platen committed
366
            time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
367
368
369
370
371

            self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
            timestep_input_dim = block_out_channels[0]
        else:
            raise ValueError(
Alexander Pivovarov's avatar
Alexander Pivovarov committed
372
                f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
373
            )
374

375
376
377
378
379
380
381
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
            post_act_fn=timestep_post_act,
            cond_proj_dim=time_cond_proj_dim,
        )
382

YiYi Xu's avatar
YiYi Xu committed
383
384
        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
385
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
YiYi Xu's avatar
YiYi Xu committed
386
387
388
389
390
391
392
393
            logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
394
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
YiYi Xu's avatar
YiYi Xu committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )

        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
William Berman's avatar
William Berman committed
409
410
411
        else:
            self.encoder_hid_proj = None

412
        # class embedding
Will Berman's avatar
Will Berman committed
413
        if class_embed_type is None and num_class_embeds is not None:
414
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
Will Berman's avatar
Will Berman committed
415
        elif class_embed_type == "timestep":
416
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
Will Berman's avatar
Will Berman committed
417
418
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
419
420
421
422
423
424
425
426
427
428
429
430
431
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
432
433
434
435
436
437
        elif class_embed_type == "simple_projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
                )
            self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
Will Berman's avatar
Will Berman committed
438
439
        else:
            self.class_embedding = None
440

Patrick von Platen's avatar
Patrick von Platen committed
441
442
443
444
445
446
447
448
449
        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
            )
YiYi Xu's avatar
YiYi Xu committed
450
451
452
453
454
455
456
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
            )
Patrick von Platen's avatar
Patrick von Platen committed
457
        elif addition_embed_type is not None:
YiYi Xu's avatar
YiYi Xu committed
458
            raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
Patrick von Platen's avatar
Patrick von Platen committed
459

460
461
462
        if time_embedding_act_fn is None:
            self.time_embed_act = None
        else:
463
            self.time_embed_act = get_activation(time_embedding_act_fn)
464

465
466
467
        self.down_blocks = nn.ModuleList([])
        self.up_blocks = nn.ModuleList([])

468
        if isinstance(only_cross_attention, bool):
469
470
471
            if mid_block_only_cross_attention is None:
                mid_block_only_cross_attention = only_cross_attention

472
473
            only_cross_attention = [only_cross_attention] * len(down_block_types)

474
475
476
        if mid_block_only_cross_attention is None:
            mid_block_only_cross_attention = False

477
478
479
        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

Suraj Patil's avatar
Suraj Patil committed
480
481
482
        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
483
484
485
        if isinstance(cross_attention_dim, int):
            cross_attention_dim = (cross_attention_dim,) * len(down_block_types)

486
487
488
        if isinstance(layers_per_block, int):
            layers_per_block = [layers_per_block] * len(down_block_types)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
489
490
491
492
493
494
495
496
        if class_embeddings_concat:
            # The time embeddings are concatenated with the class embeddings. The dimension of the
            # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
            # regular time embeddings
            blocks_time_embed_dim = time_embed_dim * 2
        else:
            blocks_time_embed_dim = time_embed_dim

497
498
499
500
501
502
503
504
505
        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
506
                num_layers=layers_per_block[i],
507
508
                in_channels=input_channel,
                out_channels=output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
509
                temb_channels=blocks_time_embed_dim,
510
511
512
513
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
514
                cross_attention_dim=cross_attention_dim[i],
515
                num_attention_heads=num_attention_heads[i],
516
517
                downsample_padding=downsample_padding,
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
518
                use_linear_projection=use_linear_projection,
519
                only_cross_attention=only_cross_attention[i],
520
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
521
                resnet_time_scale_shift=resnet_time_scale_shift,
522
523
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
524
                cross_attention_norm=cross_attention_norm,
525
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
526
527
528
529
            )
            self.down_blocks.append(down_block)

        # mid
Will Berman's avatar
Will Berman committed
530
531
532
        if mid_block_type == "UNetMidBlockFlatCrossAttn":
            self.mid_block = UNetMidBlockFlatCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
533
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
534
535
536
537
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
                resnet_time_scale_shift=resnet_time_scale_shift,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
538
                cross_attention_dim=cross_attention_dim[-1],
539
                num_attention_heads=num_attention_heads[-1],
Will Berman's avatar
Will Berman committed
540
541
542
543
544
545
546
547
                resnet_groups=norm_num_groups,
                dual_cross_attention=dual_cross_attention,
                use_linear_projection=use_linear_projection,
                upcast_attention=upcast_attention,
            )
        elif mid_block_type == "UNetMidBlockFlatSimpleCrossAttn":
            self.mid_block = UNetMidBlockFlatSimpleCrossAttn(
                in_channels=block_out_channels[-1],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
548
                temb_channels=blocks_time_embed_dim,
Will Berman's avatar
Will Berman committed
549
550
551
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                output_scale_factor=mid_block_scale_factor,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
552
                cross_attention_dim=cross_attention_dim[-1],
553
                attention_head_dim=attention_head_dim[-1],
Will Berman's avatar
Will Berman committed
554
555
                resnet_groups=norm_num_groups,
                resnet_time_scale_shift=resnet_time_scale_shift,
556
                skip_time_act=resnet_skip_time_act,
557
                only_cross_attention=mid_block_only_cross_attention,
558
                cross_attention_norm=cross_attention_norm,
Will Berman's avatar
Will Berman committed
559
            )
560
561
        elif mid_block_type is None:
            self.mid_block = None
Will Berman's avatar
Will Berman committed
562
563
        else:
            raise ValueError(f"unknown mid_block_type : {mid_block_type}")
564
565
566
567
568
569

        # count how many layers upsample the images
        self.num_upsamplers = 0

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
570
        reversed_num_attention_heads = list(reversed(num_attention_heads))
571
        reversed_layers_per_block = list(reversed(layers_per_block))
Sanchit Gandhi's avatar
Sanchit Gandhi committed
572
        reversed_cross_attention_dim = list(reversed(cross_attention_dim))
573
        only_cross_attention = list(reversed(only_cross_attention))
574

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            is_final_block = i == len(block_out_channels) - 1

            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]

            # add upsample block for all BUT final layer
            if not is_final_block:
                add_upsample = True
                self.num_upsamplers += 1
            else:
                add_upsample = False

            up_block = get_up_block(
                up_block_type,
592
                num_layers=reversed_layers_per_block[i] + 1,
593
594
595
                in_channels=input_channel,
                out_channels=output_channel,
                prev_output_channel=prev_output_channel,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
596
                temb_channels=blocks_time_embed_dim,
597
598
599
600
                add_upsample=add_upsample,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
601
                cross_attention_dim=reversed_cross_attention_dim[i],
602
                num_attention_heads=reversed_num_attention_heads[i],
603
                dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
604
                use_linear_projection=use_linear_projection,
605
                only_cross_attention=only_cross_attention[i],
606
                upcast_attention=upcast_attention,
Will Berman's avatar
Will Berman committed
607
                resnet_time_scale_shift=resnet_time_scale_shift,
608
609
                resnet_skip_time_act=resnet_skip_time_act,
                resnet_out_scale_factor=resnet_out_scale_factor,
610
                cross_attention_norm=cross_attention_norm,
611
                attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
612
613
614
615
616
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
617
618
619
620
        if norm_num_groups is not None:
            self.conv_norm_out = nn.GroupNorm(
                num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
            )
621

622
            self.conv_act = get_activation(act_fn)
623

624
625
626
627
628
629
630
631
        else:
            self.conv_norm_out = None
            self.conv_act = None

        conv_out_padding = (conv_out_kernel - 1) // 2
        self.conv_out = LinearMultiDim(
            block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
        )
632

633
    @property
Patrick von Platen's avatar
Patrick von Platen committed
634
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
635
636
637
638
639
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
640
        # set recursively
641
642
        processors = {}

Patrick von Platen's avatar
Patrick von Platen committed
643
        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
644
645
646
647
648
649
650
651
652
653
654
655
656
            if hasattr(module, "set_processor"):
                processors[f"{name}.processor"] = module.processor

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

Patrick von Platen's avatar
Patrick von Platen committed
657
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
658
659
        r"""
        Parameters:
Patrick von Platen's avatar
Patrick von Platen committed
660
            `processor (`dict` of `AttentionProcessor` or `AttentionProcessor`):
661
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
Patrick von Platen's avatar
Patrick von Platen committed
662
                of **all** `Attention` layers.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
663
            In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.:
664
665
666
667
668
669
670
671
672
673
674

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
675
            if hasattr(module, "set_processor"):
676
677
678
679
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))
680

681
682
            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
683

684
685
        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)
686

687
688
689
690
691
692
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        self.set_attn_processor(AttnProcessor())

693
    def set_attention_slice(self, slice_size):
694
695
696
697
698
699
700
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.

        Args:
Patrick von Platen's avatar
Patrick von Platen committed
701
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
702
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
703
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
704
705
                provided, uses as many slices as `num_attention_heads // slice_size`. In this case,
                `num_attention_heads` must be a multiple of `slice_size`.
706
707
708
        """
        sliceable_head_dims = []

Alexander Pivovarov's avatar
Alexander Pivovarov committed
709
        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
710
711
712
713
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
714
                fn_recursive_retrieve_sliceable_dims(child)
715
716
717

        # retrieve number of attention layers
        for module in self.children():
Alexander Pivovarov's avatar
Alexander Pivovarov committed
718
            fn_recursive_retrieve_sliceable_dims(module)
719

Alexander Pivovarov's avatar
Alexander Pivovarov committed
720
        num_sliceable_layers = len(sliceable_head_dims)
721
722
723
724
725
726
727

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
Alexander Pivovarov's avatar
Alexander Pivovarov committed
728
            slice_size = num_sliceable_layers * [1]
729

Alexander Pivovarov's avatar
Alexander Pivovarov committed
730
        slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
731
732

        if len(slice_size) != len(sliceable_head_dims):
733
            raise ValueError(
734
735
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
736
737
            )

738
739
740
741
742
743
744
745
746
747
748
749
        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())
750

751
752
            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)
753

754
755
756
        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)
757
758
759
760
761
762
763
764
765
766

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlockFlat, DownBlockFlat, CrossAttnUpBlockFlat, UpBlockFlat)):
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
767
        class_labels: Optional[torch.Tensor] = None,
768
        timestep_cond: Optional[torch.Tensor] = None,
Will Berman's avatar
Will Berman committed
769
        attention_mask: Optional[torch.Tensor] = None,
770
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
YiYi Xu's avatar
YiYi Xu committed
771
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
772
773
        down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
        mid_block_additional_residual: Optional[torch.Tensor] = None,
774
        encoder_attention_mask: Optional[torch.Tensor] = None,
775
776
777
778
779
780
        return_dict: bool = True,
    ) -> Union[UNet2DConditionOutput, Tuple]:
        r"""
        Args:
            sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
            timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
781
            encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
782
783
784
785
            encoder_attention_mask (`torch.Tensor`):
                (batch, sequence_length) cross-attention mask, applied to encoder_hidden_states. True = keep, False =
                discard. Mask will be converted into a bias, which adds large negative values to attention scores
                corresponding to "discard" tokens.
786
787
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
788
            cross_attention_kwargs (`dict`, *optional*):
Patrick von Platen's avatar
Patrick von Platen committed
789
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
790
791
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
YiYi Xu's avatar
YiYi Xu committed
792
793
794
795
            added_cond_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified includes additonal conditions that can be used for additonal time
                embeddings or encoder hidden states projections. See the configurations `encoder_hid_dim_type` and
                `addition_embed_type` for more information.
796
797
798
799
800
801
802

        Returns:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
            [`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        # By default samples have to be AT least a multiple of the overall upsampling factor.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
803
        # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
804
805
806
807
808
809
810
811
812
813
814
815
        # However, the upsampling interpolation output size can be forced to fit any upsampling size
        # on the fly if necessary.
        default_overall_up_factor = 2**self.num_upsamplers

        # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
        forward_upsample_size = False
        upsample_size = None

        if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
            logger.info("Forward upsample size to force interpolation output size.")
            forward_upsample_size = True

816
817
818
819
820
821
822
823
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
Will Berman's avatar
Will Berman committed
824
        if attention_mask is not None:
825
826
827
828
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
Will Berman's avatar
Will Berman committed
829
830
831
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

832
833
834
835
836
        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None:
            encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

837
838
839
840
841
842
843
844
        # 0. center input if necessary
        if self.config.center_input_sample:
            sample = 2 * sample - 1.0

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
845
846
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
Patrick von Platen's avatar
Patrick von Platen committed
847
            if isinstance(timestep, float):
848
849
850
851
852
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
853
854
855
856
857
858
859
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

860
        # `Timesteps` does not contain any weights and will always return f32 tensors
861
862
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
863
        t_emb = t_emb.to(dtype=sample.dtype)
864
865

        emb = self.time_embedding(t_emb, timestep_cond)
866

Will Berman's avatar
Will Berman committed
867
        if self.class_embedding is not None:
868
869
            if class_labels is None:
                raise ValueError("class_labels should be provided when num_class_embeds > 0")
Will Berman's avatar
Will Berman committed
870
871
872
873

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

874
875
876
877
                # `Timesteps` does not contain any weights and will always return f32 tensors
                # there might be better ways to encapsulate this.
                class_labels = class_labels.to(dtype=sample.dtype)

878
            class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
879
880
881
882
883

            if self.config.class_embeddings_concat:
                emb = torch.cat([emb, class_emb], dim=-1)
            else:
                emb = emb + class_emb
884

Patrick von Platen's avatar
Patrick von Platen committed
885
886
887
        if self.config.addition_embed_type == "text":
            aug_emb = self.add_embedding(encoder_hidden_states)
            emb = emb + aug_emb
YiYi Xu's avatar
YiYi Xu committed
888
889
890
891
892
893
894
895
896
897
898
899
900
        elif self.config.addition_embed_type == "text_image":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires"
                    " the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
                )

            image_embs = added_cond_kwargs.get("image_embeds")
            text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)

            aug_emb = self.add_embedding(text_embs, image_embs)
            emb = emb + aug_emb
Patrick von Platen's avatar
Patrick von Platen committed
901

902
903
904
        if self.time_embed_act is not None:
            emb = self.time_embed_act(emb)

YiYi Xu's avatar
YiYi Xu committed
905
        if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
William Berman's avatar
William Berman committed
906
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
YiYi Xu's avatar
YiYi Xu committed
907
908
909
910
911
912
913
914
915
916
        elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
            # Kadinsky 2.1 - style
            if "image_embeds" not in added_cond_kwargs:
                raise ValueError(
                    f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which"
                    " requires the keyword argument `image_embeds` to be passed in  `added_conditions`"
                )

            image_embeds = added_cond_kwargs.get("image_embeds")
            encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
William Berman's avatar
William Berman committed
917

918
919
920
921
922
923
        # 2. pre-process
        sample = self.conv_in(sample)

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
924
            if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
925
926
927
928
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
Will Berman's avatar
Will Berman committed
929
                    attention_mask=attention_mask,
930
                    cross_attention_kwargs=cross_attention_kwargs,
931
                    encoder_attention_mask=encoder_attention_mask,
932
933
934
935
936
937
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

938
939
940
941
942
943
        if down_block_additional_residuals is not None:
            new_down_block_res_samples = ()

            for down_block_res_sample, down_block_additional_residual in zip(
                down_block_res_samples, down_block_additional_residuals
            ):
944
                down_block_res_sample = down_block_res_sample + down_block_additional_residual
945
                new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
946
947
948

            down_block_res_samples = new_down_block_res_samples

949
        # 4. mid
950
951
952
953
954
955
956
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
957
                encoder_attention_mask=encoder_attention_mask,
958
            )
959

960
        if mid_block_additional_residual is not None:
961
            sample = sample + mid_block_additional_residual
962

963
964
965
966
967
968
969
970
971
972
973
974
        # 5. up
        for i, upsample_block in enumerate(self.up_blocks):
            is_final_block = i == len(self.up_blocks) - 1

            res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
            down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]

            # if we have not reached the final block and need to forward the
            # upsample size, we do it here
            if not is_final_block and forward_upsample_size:
                upsample_size = down_block_res_samples[-1].shape[2:]

975
            if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
976
977
978
979
980
                sample = upsample_block(
                    hidden_states=sample,
                    temb=emb,
                    res_hidden_states_tuple=res_samples,
                    encoder_hidden_states=encoder_hidden_states,
981
                    cross_attention_kwargs=cross_attention_kwargs,
982
                    upsample_size=upsample_size,
Will Berman's avatar
Will Berman committed
983
                    attention_mask=attention_mask,
984
                    encoder_attention_mask=encoder_attention_mask,
985
986
987
988
989
                )
            else:
                sample = upsample_block(
                    hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
                )
990

991
        # 6. post-process
992
993
994
        if self.conv_norm_out:
            sample = self.conv_norm_out(sample)
            sample = self.conv_act(sample)
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
        sample = self.conv_out(sample)

        if not return_dict:
            return (sample,)

        return UNet2DConditionOutput(sample=sample)


class LinearMultiDim(nn.Linear):
    def __init__(self, in_features, out_features=None, second_dim=4, *args, **kwargs):
        in_features = [in_features, second_dim, 1] if isinstance(in_features, int) else list(in_features)
        if out_features is None:
            out_features = in_features
        out_features = [out_features, second_dim, 1] if isinstance(out_features, int) else list(out_features)
        self.in_features_multidim = in_features
        self.out_features_multidim = out_features
        super().__init__(np.array(in_features).prod(), np.array(out_features).prod())

    def forward(self, input_tensor, *args, **kwargs):
        shape = input_tensor.shape
        n_dim = len(self.in_features_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_features)
        output_tensor = super().forward(input_tensor)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_features_multidim)
        return output_tensor


class ResnetBlockFlat(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        time_embedding_norm="default",
        use_in_shortcut=None,
        second_dim=4,
        **kwargs,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True

        in_channels = [in_channels, second_dim, 1] if isinstance(in_channels, int) else list(in_channels)
        self.in_channels_prod = np.array(in_channels).prod()
        self.channels_multidim = in_channels

        if out_channels is not None:
            out_channels = [out_channels, second_dim, 1] if isinstance(out_channels, int) else list(out_channels)
            out_channels_prod = np.array(out_channels).prod()
            self.out_channels_multidim = out_channels
        else:
            out_channels_prod = self.in_channels_prod
            self.out_channels_multidim = self.channels_multidim
        self.time_embedding_norm = time_embedding_norm

        if groups_out is None:
            groups_out = groups

        self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=self.in_channels_prod, eps=eps, affine=True)
        self.conv1 = torch.nn.Conv2d(self.in_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        if temb_channels is not None:
            self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels_prod)
        else:
            self.time_emb_proj = None

        self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels_prod, eps=eps, affine=True)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(out_channels_prod, out_channels_prod, kernel_size=1, padding=0)

        self.nonlinearity = nn.SiLU()

        self.use_in_shortcut = (
            self.in_channels_prod != out_channels_prod if use_in_shortcut is None else use_in_shortcut
        )

        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = torch.nn.Conv2d(
                self.in_channels_prod, out_channels_prod, kernel_size=1, stride=1, padding=0
            )

    def forward(self, input_tensor, temb):
        shape = input_tensor.shape
        n_dim = len(self.channels_multidim)
        input_tensor = input_tensor.reshape(*shape[0:-n_dim], self.in_channels_prod, 1, 1)
        input_tensor = input_tensor.view(-1, self.in_channels_prod, 1, 1)

        hidden_states = input_tensor

        hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.conv1(hidden_states)

        if temb is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
            hidden_states = hidden_states + temb

        hidden_states = self.norm2(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)

        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)

        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)

        output_tensor = input_tensor + hidden_states

        output_tensor = output_tensor.view(*shape[0:-n_dim], -1)
        output_tensor = output_tensor.view(*shape[0:-n_dim], *self.out_channels_multidim)

        return output_tensor


# Copied from diffusers.models.unet_2d_blocks.DownBlock2D with DownBlock2D->DownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class DownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1181
1182
1183
1184
1185
1186
1187
1188
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1189
1190
1191
            else:
                hidden_states = resnet(hidden_states, temb)

1192
            output_states = output_states + (hidden_states,)
1193
1194
1195
1196
1197

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1198
            output_states = output_states + (hidden_states,)
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnDownBlock2D with CrossAttnDownBlock2D->CrossAttnDownBlockFlat, ResnetBlock2D->ResnetBlockFlat, Downsample2D->LinearMultiDim
class CrossAttnDownBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1217
        num_attention_heads=1,
1218
1219
1220
1221
1222
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1223
        use_linear_projection=False,
1224
        only_cross_attention=False,
1225
        upcast_attention=False,
1226
1227
1228
1229
1230
    ):
        super().__init__()
        resnets = []
        attentions = []

1231
        self.has_cross_attention = True
1232
        self.num_attention_heads = num_attention_heads
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1253
1254
                        num_attention_heads,
                        out_channels // num_attention_heads,
1255
1256
1257
1258
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1259
                        use_linear_projection=use_linear_projection,
1260
                        only_cross_attention=only_cross_attention,
1261
                        upcast_attention=upcast_attention,
1262
1263
1264
1265
1266
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1267
1268
                        num_attention_heads,
                        out_channels // num_attention_heads,
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    LinearMultiDim(
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
                    )
                ]
            )
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

1291
    def forward(
1292
1293
1294
1295
1296
1297
1298
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1299
    ):
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
1332
1333
            else:
                hidden_states = resnet(hidden_states, temb)
1334
1335
1336
1337
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1338
1339
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1340
1341
                    return_dict=False,
                )[0]
1342

1343
            output_states = output_states + (hidden_states,)
1344
1345
1346
1347
1348

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

1349
            output_states = output_states + (hidden_states,)
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

        return hidden_states, output_states


# Copied from diffusers.models.unet_2d_blocks.UpBlock2D with UpBlock2D->UpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class UpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

1418
1419
1420
1421
1422
1423
1424
1425
                if is_torch_version(">=", "1.11.0"):
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb, use_reentrant=False
                    )
                else:
                    hidden_states = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(resnet), hidden_states, temb
                    )
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
            else:
                hidden_states = resnet(hidden_states, temb)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.CrossAttnUpBlock2D with CrossAttnUpBlock2D->CrossAttnUpBlockFlat, ResnetBlock2D->ResnetBlockFlat, Upsample2D->LinearMultiDim
class CrossAttnUpBlockFlat(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1451
        num_attention_heads=1,
1452
1453
1454
1455
        cross_attention_dim=1280,
        output_scale_factor=1.0,
        add_upsample=True,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1456
        use_linear_projection=False,
1457
        only_cross_attention=False,
1458
        upcast_attention=False,
1459
1460
1461
1462
1463
    ):
        super().__init__()
        resnets = []
        attentions = []

1464
        self.has_cross_attention = True
1465
        self.num_attention_heads = num_attention_heads
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
                ResnetBlockFlat(
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1488
1489
                        num_attention_heads,
                        out_channels // num_attention_heads,
1490
1491
1492
1493
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1494
                        use_linear_projection=use_linear_projection,
1495
                        only_cross_attention=only_cross_attention,
1496
                        upcast_attention=upcast_attention,
1497
1498
1499
1500
1501
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1502
1503
                        num_attention_heads,
                        out_channels // num_attention_heads,
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([LinearMultiDim(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
1522
1523
1524
1525
1526
1527
1528
1529
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
    ):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(resnet),
                    hidden_states,
                    temb,
                    **ckpt_kwargs,
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(attn, return_dict=False),
                    hidden_states,
                    encoder_hidden_states,
                    None,  # timestep
                    None,  # class_labels
                    cross_attention_kwargs,
                    attention_mask,
                    encoder_attention_mask,
                    **ckpt_kwargs,
                )[0]
1566
1567
            else:
                hidden_states = resnet(hidden_states, temb)
1568
1569
1570
1571
                hidden_states = attn(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
1572
1573
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
1574
1575
                    return_dict=False,
                )[0]
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DCrossAttn with UNetMidBlock2DCrossAttn->UNetMidBlockFlatCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1597
        num_attention_heads=1,
1598
1599
1600
        output_scale_factor=1.0,
        cross_attention_dim=1280,
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1601
        use_linear_projection=False,
1602
        upcast_attention=False,
1603
1604
1605
    ):
        super().__init__()

1606
        self.has_cross_attention = True
1607
        self.num_attention_heads = num_attention_heads
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
1631
1632
                        num_attention_heads,
                        in_channels // num_attention_heads,
1633
1634
1635
1636
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1637
                        use_linear_projection=use_linear_projection,
1638
                        upcast_attention=upcast_attention,
1639
1640
1641
1642
1643
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
1644
1645
                        num_attention_heads,
                        in_channels // num_attention_heads,
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
                )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1670
    def forward(
1671
1672
1673
1674
1675
1676
1677
1678
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
1679
1680
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
1681
1682
1683
1684
            hidden_states = attn(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                cross_attention_kwargs=cross_attention_kwargs,
1685
1686
                attention_mask=attention_mask,
                encoder_attention_mask=encoder_attention_mask,
1687
1688
                return_dict=False,
            )[0]
Will Berman's avatar
Will Berman committed
1689
1690
1691
1692
1693
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


1694
1695
# Copied from diffusers.models.unet_2d_blocks.UNetMidBlock2DSimpleCrossAttn with UNetMidBlock2DSimpleCrossAttn->UNetMidBlockFlatSimpleCrossAttn, ResnetBlock2D->ResnetBlockFlat
class UNetMidBlockFlatSimpleCrossAttn(nn.Module):
Will Berman's avatar
Will Berman committed
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
1707
        attention_head_dim=1,
Will Berman's avatar
Will Berman committed
1708
1709
        output_scale_factor=1.0,
        cross_attention_dim=1280,
1710
        skip_time_act=False,
1711
        only_cross_attention=False,
1712
        cross_attention_norm=None,
Will Berman's avatar
Will Berman committed
1713
1714
1715
1716
1717
    ):
        super().__init__()

        self.has_cross_attention = True

1718
        self.attention_head_dim = attention_head_dim
Will Berman's avatar
Will Berman committed
1719
1720
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

1721
        self.num_heads = in_channels // self.attention_head_dim
Will Berman's avatar
Will Berman committed
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735

        # there is always at least one resnet
        resnets = [
            ResnetBlockFlat(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1736
                skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1737
1738
1739
1740
1741
            )
        ]
        attentions = []

        for _ in range(num_layers):
1742
1743
1744
1745
            processor = (
                AttnAddedKVProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnAddedKVProcessor()
            )

Will Berman's avatar
Will Berman committed
1746
            attentions.append(
Patrick von Platen's avatar
Patrick von Platen committed
1747
                Attention(
Will Berman's avatar
Will Berman committed
1748
1749
1750
                    query_dim=in_channels,
                    cross_attention_dim=in_channels,
                    heads=self.num_heads,
1751
                    dim_head=self.attention_head_dim,
Will Berman's avatar
Will Berman committed
1752
1753
1754
1755
                    added_kv_proj_dim=cross_attention_dim,
                    norm_num_groups=resnet_groups,
                    bias=True,
                    upcast_softmax=True,
1756
                    only_cross_attention=only_cross_attention,
1757
                    cross_attention_norm=cross_attention_norm,
1758
                    processor=processor,
Will Berman's avatar
Will Berman committed
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
                )
            )
            resnets.append(
                ResnetBlockFlat(
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
1773
                    skip_time_act=skip_time_act,
Will Berman's avatar
Will Berman committed
1774
1775
1776
1777
1778
1779
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

1780
    def forward(
1781
1782
1783
1784
1785
1786
1787
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
1788
1789
    ):
        cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801

        if attention_mask is None:
            # if encoder_hidden_states is defined: we are doing cross-attn, so we should use cross-attn mask.
            mask = None if encoder_hidden_states is None else encoder_attention_mask
        else:
            # when attention_mask is defined: we don't even check for encoder_attention_mask.
            # this is to maintain compatibility with UnCLIP, which uses 'attention_mask' param for cross-attn masks.
            # TODO: UnCLIP should express cross-attn mask via encoder_attention_mask param instead of via attention_mask.
            #       then we can simplify this whole if/else block to:
            #         mask = attention_mask if encoder_hidden_states is None else encoder_attention_mask
            mask = attention_mask

Will Berman's avatar
Will Berman committed
1802
1803
1804
1805
1806
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            # attn
            hidden_states = attn(
                hidden_states,
1807
                encoder_hidden_states=encoder_hidden_states,
1808
                attention_mask=mask,
1809
                **cross_attention_kwargs,
Will Berman's avatar
Will Berman committed
1810
1811
1812
            )

            # resnet
1813
1814
1815
            hidden_states = resnet(hidden_states, temb)

        return hidden_states