test_stable_diffusion_inpaint.py 55.8 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27

from diffusers import (
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
28
    AsymmetricAutoencoderKL,
29
    AutoencoderKL,
30
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
Patrick von Platen's avatar
Patrick von Platen committed
32
    LCMScheduler,
33
    LMSDiscreteScheduler,
34
35
36
37
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
38
from diffusers.models.attention_processor import AttnProcessor
39
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
40
41
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
42
43
44
45
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
46
    require_python39_or_higher,
47
48
49
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
50
51
    slow,
    torch_device,
52
)
53

54
55
56
57
58
from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
59
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
60

61

62
enable_full_determinism()
63
64


65
66
67
68
69
70
71
72
73
74
75
76
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
77
        pipe.unet.set_default_attn_processor()
78
79
80
81
82
83
84
85
86
87
88
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
89
        expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
90
91
92
93
94
95
96
97
98
        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


99
100
101
class StableDiffusionInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
102
    pipeline_class = StableDiffusionInpaintPipeline
103
104
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
105
106
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
107
    image_latents_params = frozenset([])
108
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
109

Patrick von Platen's avatar
Patrick von Platen committed
110
    def get_dummy_components(self, time_cond_proj_dim=None):
111
        torch.manual_seed(0)
112
        unet = UNet2DConditionModel(
113
            block_out_channels=(32, 64),
Patrick von Platen's avatar
Patrick von Platen committed
114
            time_cond_proj_dim=time_cond_proj_dim,
115
116
117
118
119
120
121
122
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
123
        scheduler = PNDMScheduler(skip_prk_steps=True)
124
        torch.manual_seed(0)
125
        vae = AutoencoderKL(
126
127
128
129
130
131
132
133
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
134
        text_encoder_config = CLIPTextConfig(
135
136
137
138
139
140
141
142
143
144
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
145
        text_encoder = CLIPTextModel(text_encoder_config)
146
147
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

148
149
150
151
152
153
154
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
155
            "feature_extractor": None,
156
            "image_encoder": None,
157
158
159
        }
        return components

160
    def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
161
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
        if output_pil:
            # Get random floats in [0, 1] as image
            image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
            image = image.cpu().permute(0, 2, 3, 1)[0]
            mask_image = torch.ones_like(image)
            # Convert image and mask_image to [0, 255]
            image = 255 * image
            mask_image = 255 * mask_image
            # Convert to PIL image
            init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
            mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
        else:
            # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
            image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
            # Convert image to [-1, 1]
            init_image = 2.0 * image - 1.0
            mask_image = torch.ones((1, 1, img_res, img_res), device=device)

180
181
182
183
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
184

185
186
187
188
189
190
191
192
193
194
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
195

196
197
198
199
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
200
201
202
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

203
204
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
205
206
        image_slice = image[0, -3:, -3:, -1]

207
        assert image.shape == (1, 64, 64, 3)
208
        expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
209

210
211
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4931, 0.5988, 0.4569, 0.5556, 0.6650, 0.5087, 0.5966, 0.5358, 0.5269])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

229
230
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
231
232
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
233
234
235
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

236
237
238
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
239

240
241
242
243
244
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
245

246
247
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
248

249
250
251
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

252
253
254
255
256
257
258
259
260
261
262
263
264
265
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    def test_stable_diffusion_inpaint_mask_latents(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # normal mask + normal image
        ##  `image`: pil, `mask_image``: pil, `masked_image_latents``: None
        inputs = self.get_dummy_inputs(device)
        inputs["strength"] = 0.9
        out_0 = sd_pipe(**inputs).images

        # image latents + mask latents
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
        mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
        masked_image = image * (mask < 0.5)

        generator = torch.Generator(device=device).manual_seed(0)
        image_latents = (
            sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
        )
        torch.randn((1, 4, 32, 32), generator=generator)
        mask_latents = (
            sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
            * sd_pipe.vae.config.scaling_factor
        )
        inputs["image"] = image_latents
        inputs["masked_image_latents"] = mask_latents
        inputs["mask_image"] = mask
        inputs["strength"] = 0.9
        generator = torch.Generator(device=device).manual_seed(0)
        torch.randn((1, 4, 32, 32), generator=generator)
        inputs["generator"] = generator
        out_1 = sd_pipe(**inputs).images
        assert np.abs(out_0 - out_1).max() < 1e-2

303

304
305
306
307
308
309
310
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

Patrick von Platen's avatar
Patrick von Platen committed
311
    def get_dummy_components(self, time_cond_proj_dim=None):
312
313
314
315
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
Patrick von Platen's avatar
Patrick von Platen committed
316
            time_cond_proj_dim=time_cond_proj_dim,
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
357
            "image_encoder": None,
358
359
360
        }
        return components

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
    def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
        # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
        image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
        image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
        # Convert images to [-1, 1]
        init_image1 = 2.0 * image1 - 1.0
        init_image2 = 2.0 * image2 - 1.0

        # empty mask
        mask_image = torch.zeros((1, 1, img_res, img_res), device=device)

        if str(device).startswith("mps"):
            generator1 = torch.manual_seed(seed)
            generator2 = torch.manual_seed(seed)
        else:
            generator1 = torch.Generator(device=device).manual_seed(seed)
            generator2 = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": ["A painting of a squirrel eating a burger"] * 2,
            "image": [init_image1, init_image2],
            "mask_image": [mask_image] * 2,
            "generator": [generator1, generator2],
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

390
391
392
393
394
395
396
397
398
399
400
401
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
402
        expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
403
404
405

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

Patrick von Platen's avatar
Patrick von Platen committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_stable_diffusion_inpaint_lcm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(time_cond_proj_dim=256)
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.6240, 0.5355, 0.5649, 0.5378, 0.5374, 0.6242, 0.5132, 0.5347, 0.5396])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_stable_diffusion_inpaint_2_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test to confirm if we pass two same image, we will get same output
        inputs = self.get_dummy_inputs(device)
        gen1 = torch.Generator(device=device).manual_seed(0)
        gen2 = torch.Generator(device=device).manual_seed(0)
        for name in ["prompt", "image", "mask_image"]:
            inputs[name] = [inputs[name]] * 2
        inputs["generator"] = [gen1, gen2]
        images = sd_pipe(**inputs).images

        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4

        # test to confirm that if we pass two different images, we will get different output
        inputs = self.get_dummy_inputs_2images(device)
        images = sd_pipe(**inputs).images
        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2

454

455
@slow
456
@require_torch_gpu
457
458
459
460
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

461
462
463
464
465
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

466
467
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
468
        init_image = load_image(
469
470
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
471
472
        )
        mask_image = load_image(
473
474
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
475
        )
476
477
478
479
480
481
482
483
484
485
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
486

487
488
489
490
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
491
492
493
494
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

495
496
497
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
498

499
        assert image.shape == (1, 512, 512, 3)
500
501
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

502
        assert np.abs(expected_slice - image_slice).max() < 6e-4
503
504
505

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
506
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
507
        )
508
        pipe.unet.set_default_attn_processor()
509
510
511
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
512

513
514
515
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
516

517
        assert image.shape == (1, 512, 512, 3)
518
        expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
519
        assert np.abs(expected_slice - image_slice).max() < 1e-1
520

521
    def test_stable_diffusion_inpaint_pndm(self):
522
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
523
            "runwayml/stable-diffusion-inpainting", safety_checker=None
524
        )
525
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
526
527
528
529
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

530
531
532
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
533

534
        assert image.shape == (1, 512, 512, 3)
535
536
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

537
        assert np.abs(expected_slice - image_slice).max() < 5e-3
538

539
540
541
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
542
        )
543
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
544
545
546
547
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

548
549
550
551
552
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
553
554
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

555
        assert np.abs(expected_slice - image_slice).max() < 6e-3
556

557
558
559
560
561
562
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
563
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
564
        )
565
566
567
568
569
570
571
572
573
574
575
576
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
577
    @require_python39_or_higher
578
    @require_torch_2
579
    def test_inpaint_compile(self):
580
581
582
583
584
585
586
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
587

588
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
606

607
608
609
610
611
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
612
        pipe.unet.set_default_attn_processor()
613
614
615
616
617
618
619
620
621
622
623
624
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
625
626
        expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
627

628
629
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
630
        pipe.unet.set_default_attn_processor()
631
632
633
634
635
636
637
638
639
640
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
641
642
        expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
643

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

678
        assert np.max(np.abs(image - image_ckpt)) < 5e-4
679

680

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        )
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
719
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
720
721
722
723
724
725
726
727
728
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
729
        expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
730

731
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
732
733
734
735
736
737
738
739

    def test_stable_diffusion_inpaint_fp16(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
        )
740
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        pipe.vae = vae
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])

        assert np.abs(expected_slice - image_slice).max() < 5e-2

    def test_stable_diffusion_inpaint_pndm(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
760
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
761
762
763
764
765
766
767
768
769
770
771
        pipe.vae = vae
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
772
        expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
773
774
775
776
777
778
779
780

        assert np.abs(expected_slice - image_slice).max() < 5e-3

    def test_stable_diffusion_inpaint_k_lms(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
781
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
782
783
784
785
786
787
788
789
790
791
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
792
        expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
        assert np.abs(expected_slice - image_slice).max() < 6e-3

    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.45 GB is allocated
        assert mem_bytes < 2.45 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
819
    @require_python39_or_higher
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
    @require_torch_2
    def test_inpaint_compile(self):
        pass

    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5",
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)

    def test_stable_diffusion_inpaint_strength_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
852
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

    def test_stable_diffusion_simple_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.vae = vae
874
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
875
876
877
878
879
880
881
882
883
884
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
885
886
        expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

    def test_download_local(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.vae = vae
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        pass


909
910
911
912
913
914
915
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
916

917
918
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
919
        init_image = load_image(
920
921
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
922
923
        )
        mask_image = load_image(
924
925
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
926
        )
927
928
929
930
931
932
933
934
935
936
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
937

938
939
940
941
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
942

943
944
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
945

946
947
948
949
950
951
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
952

953
954
955
956
957
958
959
960
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
961

962
963
964
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
965
        )
966
967
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
968

969
970
971
972
973
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
974

975
976
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
977

978
979
980
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
981
        )
982
983
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
984

985
986
987
988
989
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
990

991
992
993
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
994

995
996
997
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
998
        )
999
1000
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
1001

Patrick von Platen's avatar
Patrick von Platen committed
1002

1003
1004
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
1005
1006
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1007
        im = Image.fromarray(im)
1008
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
1009
1010
        mask = Image.fromarray((mask * 255).astype(np.uint8))

1011
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
1012
1013
1014

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
1015
        self.assertTrue(isinstance(t_image, torch.Tensor))
1016
1017
1018

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
1019
        self.assertEqual(t_image.ndim, 4)
1020

1021
1022
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
1023
        self.assertEqual(t_image.shape, (1, 3, height, width))
1024
1025
1026

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
1027
        self.assertTrue(t_image.dtype == torch.float32)
1028
1029
1030
1031
1032

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
1033
1034
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
1035
1036
1037
1038

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
1039
1040
1041
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1042
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
1055
1056
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

1057
1058
1059
1060
1061
1062
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
1063
1064
1065

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
1066
        self.assertTrue((t_image_np == t_image_pil).all())
1067
1068

    def test_torch_3D_2D_inputs(self):
1069
1070
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1093
1094
1095
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1096
1097
1098
1099
1100
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1101
        )
1102
1103
1104

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1105
        self.assertTrue((t_image_tensor == t_image_np).all())
1106
1107

    def test_torch_3D_3D_inputs(self):
1108
1109
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1133
1134
1135
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1136
1137
1138
1139
1140
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1141
        )
1142
1143
1144

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1145
        self.assertTrue((t_image_tensor == t_image_np).all())
1146
1147

    def test_torch_4D_2D_inputs(self):
1148
1149
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1173
1174
1175
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1176
1177
1178
1179
1180
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1181
        )
1182
1183
1184

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1185
        self.assertTrue((t_image_tensor == t_image_np).all())
1186
1187

    def test_torch_4D_3D_inputs(self):
1188
1189
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1214
1215
1216
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1217
1218
1219
1220
1221
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1222
        )
1223
1224
1225

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1226
        self.assertTrue((t_image_tensor == t_image_np).all())
1227
1228

    def test_torch_4D_4D_inputs(self):
1229
1230
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1256
1257
1258
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

1259
1260
1261
1262
1263
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1264
        )
1265
1266
1267

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1268
        self.assertTrue((t_image_tensor == t_image_np).all())
1269
1270

    def test_torch_batch_4D_3D(self):
1271
1272
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1297
1298
1299
1300

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

1301
1302
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1303
        )
1304
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1305
1306
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1307
        t_image_np = torch.cat([n[2] for n in nps])
1308
1309
1310

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1311
        self.assertTrue((t_image_tensor == t_image_np).all())
1312
1313

    def test_torch_batch_4D_4D(self):
1314
1315
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1341
1342
1343
1344

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

1345
1346
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1347
        )
1348
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1349
1350
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1351
        t_image_np = torch.cat([n[2] for n in nps])
1352
1353
1354

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1355
        self.assertTrue((t_image_tensor == t_image_np).all())
1356
1357

    def test_shape_mismatch(self):
1358
1359
        height, width = 32, 32

1360
1361
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1362
1363
1364
1365
1366
1367
1368
1369
1370
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1371
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1372
            )
1373
1374
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1385
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1386
            )
1387
1388
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1399
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1400
            )
1401
1402

    def test_type_mismatch(self):
1403
1404
        height, width = 32, 32

1405
1406
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1420
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1421
            )
1422
1423
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1437
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1438
            )
1439
1440

    def test_channels_first(self):
1441
1442
        height, width = 32, 32

1443
1444
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1445
1446
1447
1448
1449
1450
1451
1452
1453
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1454
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1455
            )
1456
1457

    def test_tensor_range(self):
1458
1459
        height, width = 32, 32

1460
1461
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1475
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1476
            )
1477
1478
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1492
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1493
            )
1494
1495
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1509
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1510
            )
1511
1512
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1526
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1527
            )