test_stable_diffusion_img2img.py 15.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
25
    DDIMScheduler,
26
27
28
29
30
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
31
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
32
from diffusers.utils.testing_utils import require_torch_gpu
33
34
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer

35
36
from ...test_pipelines_common import PipelineTesterMixin

37
38
39
40

torch.backends.cuda.matmul.allow_tf32 = False


41
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
42
    pipeline_class = StableDiffusionImg2ImgPipeline
43

44
    def get_dummy_components(self):
45
        torch.manual_seed(0)
46
        unet = UNet2DConditionModel(
47
48
49
50
51
52
53
54
55
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
56
        scheduler = PNDMScheduler(skip_prk_steps=True)
57
        torch.manual_seed(0)
58
        vae = AutoencoderKL(
59
60
61
62
63
64
65
66
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
67
        text_encoder_config = CLIPTextConfig(
68
69
70
71
72
73
74
75
76
77
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
78
79
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
107

108
    def test_stable_diffusion_img2img_default_case(self):
109
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
110
111
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
112
113
114
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

115
116
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
117
118
119
120
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
121
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
122
123
124

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
125
126
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
127
128
129
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

130
        inputs = self.get_dummy_inputs(device)
131
        negative_prompt = "french fries"
132
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
133
134
135
136
137
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
138
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
139
140
141

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
142
143
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
144
145
146
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

147
148
149
150
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
151
152
153
154
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
155
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
156
157
158

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
159
160
161
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
162
        )
163
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
164
165
166
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

167
168
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
169
170
171
172
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
173
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
174
175

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
176
177
178
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
179
180
181
182
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test num_images_per_prompt=1 (default)
183
184
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs).images
185
186
187
188
189

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
190
191
192
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs).images
193
194
195
196
197

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
198
199
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
200
201
202
203
204

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
205
206
207
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
208
209
210
211
212

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)


@slow
213
214
@require_torch_gpu
class StableDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
215
216
217
218
219
220
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

221
    def test_stable_diffusion_img2img_pipeline_default(self):
222
223
224
225
226
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
227
        expected_image = load_numpy(
228
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape.npy"
229
        )
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
245
            image=init_image,
246
247
248
249
250
251
252
253
254
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        # img2img is flaky across GPUs even in fp32, so using MAE here
255
        assert np.abs(expected_image - image).max() < 1e-3
256
257
258
259
260
261
262

    def test_stable_diffusion_img2img_pipeline_k_lms(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
263
        expected_image = load_numpy(
264
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_k_lms.npy"
265
        )
266
267

        model_id = "CompVis/stable-diffusion-v1-4"
268
        lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=lms,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
283
            image=init_image,
284
285
286
287
288
289
290
291
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
292
293
294
295
296
297
298
299
300
301
302
303
304
        assert np.abs(expected_image - image).max() < 1e-3

    def test_stable_diffusion_img2img_pipeline_ddim(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_ddim.npy"
        )

        model_id = "CompVis/stable-diffusion-v1-4"
305
        ddim = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            scheduler=ddim,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        output = pipe(
            prompt=prompt,
320
            image=init_image,
321
322
323
324
325
326
327
328
329
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        assert image.shape == (512, 768, 3)
        assert np.abs(expected_image - image).max() < 1e-3
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

        def test_callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            test_callback_fn.has_been_called = True
            nonlocal number_of_steps
            number_of_steps += 1
            if step == 0:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.9052, -0.0184, 0.4810, 0.2898, 0.5851, 1.4920, 0.5362, 1.9838, 0.0530])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
            elif step == 37:
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
                expected_slice = np.array([0.7071, 0.7831, 0.8300, 1.8140, 1.7840, 1.9402, 1.3651, 1.6590, 1.2828])
                assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-2

        test_callback_fn.has_been_called = False

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
360
361
362
            "CompVis/stable-diffusion-v1-4",
            revision="fp16",
            torch_dtype=torch.float16,
363
364
365
366
367
368
369
370
371
372
373
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        with torch.autocast(torch_device):
            pipe(
                prompt=prompt,
374
                image=init_image,
375
376
377
378
379
380
381
382
                strength=0.75,
                num_inference_steps=50,
                guidance_scale=7.5,
                generator=generator,
                callback=test_callback_fn,
                callback_steps=1,
            )
        assert test_callback_fn.has_been_called
383
        assert number_of_steps == 37
384
385
386
387

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
388
        torch.cuda.reset_peak_memory_stats()
389
390
391
392
393
394
395
396

        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        init_image = init_image.resize((768, 512))

        model_id = "CompVis/stable-diffusion-v1-4"
397
        lms = LMSDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
398
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
Anton Lozhkov's avatar
Anton Lozhkov committed
399
            model_id, scheduler=lms, safety_checker=None, device_map="auto", revision="fp16", torch_dtype=torch.float16
400
401
402
403
404
405
406
407
408
409
410
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        prompt = "A fantasy landscape, trending on artstation"

        generator = torch.Generator(device=torch_device).manual_seed(0)
        _ = pipe(
            prompt=prompt,
411
            image=init_image,
412
413
414
415
416
417
418
419
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
            num_inference_steps=5,
        )

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
420
421
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9