"tests/pipelines/vscode:/vscode.git/clone" did not exist on "27062c3631b7011a5df45782b8e3d01349d1f3e9"
pipeline_stable_diffusion.py 36.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
import inspect
16
import warnings
17
from typing import Any, Callable, Dict, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
18
19

import torch
20
from packaging import version
21
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
Suraj Patil's avatar
Suraj Patil committed
22

23
from ...configuration_utils import FrozenDict
24
from ...image_processor import VaeImageProcessor
Patrick von Platen's avatar
Patrick von Platen committed
25
from ...loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
Suraj Patil's avatar
Suraj Patil committed
26
from ...models import AutoencoderKL, UNet2DConditionModel
Kashif Rasul's avatar
Kashif Rasul committed
27
from ...schedulers import KarrasDiffusionSchedulers
28
29
30
31
32
33
34
35
from ...utils import (
    deprecate,
    is_accelerate_available,
    is_accelerate_version,
    logging,
    randn_tensor,
    replace_example_docstring,
)
36
from ..pipeline_utils import DiffusionPipeline
37
from . import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
38
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
39
40


41
42
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

43
44
45
46
47
48
49
50
51
52
53
54
55
56
EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> image = pipe(prompt).images[0]
        ```
"""

57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


Patrick von Platen's avatar
Patrick von Platen committed
72
class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
73
74
75
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

76
77
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
78

79
80
81
82
83
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
1lint's avatar
1lint committed
84

85
86
    Args:
        vae ([`AutoencoderKL`]):
87
88
89
90
91
92
93
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
94
        scheduler ([`SchedulerMixin`]):
95
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
96
97
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
98
            Classification module that estimates whether generated images could be considered offensive or harmful.
99
100
101
102
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
103
    """
104
    _optional_components = ["safety_checker", "feature_extractor"]
105

Suraj Patil's avatar
Suraj Patil committed
106
107
108
109
110
111
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
Kashif Rasul's avatar
Kashif Rasul committed
112
        scheduler: KarrasDiffusionSchedulers,
Suraj Patil's avatar
Suraj Patil committed
113
        safety_checker: StableDiffusionSafetyChecker,
114
        feature_extractor: CLIPImageProcessor,
115
        requires_safety_checker: bool = True,
Suraj Patil's avatar
Suraj Patil committed
116
117
    ):
        super().__init__()
118
119

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
120
            deprecation_message = (
121
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
122
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
123
124
125
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
126
                " file"
127
            )
128
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
129
130
131
132
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

133
134
135
136
137
138
139
140
141
142
143
144
145
        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

146
        if safety_checker is None and requires_safety_checker:
147
            logger.warning(
148
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
149
150
151
152
153
154
155
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

156
157
158
159
160
161
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

162
163
164
165
166
167
168
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
169
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
170
171
172
173
174
175
176
177
178
179
180
181
182
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Suraj Patil's avatar
Suraj Patil committed
183
184
185
186
187
188
189
190
191
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Patrick von Platen's avatar
Patrick von Platen committed
192
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
193
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
194
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Suraj Patil's avatar
Suraj Patil committed
195

196
197
    def enable_vae_slicing(self):
        r"""
198
199
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
200
201
202
203
204
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
205
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
206
207
208
209
        computing decoding in one step.
        """
        self.vae.disable_slicing()

210
211
    def enable_vae_tiling(self):
        r"""
212
213
214
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
215
216
217
218
219
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
220
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
221
222
223
224
        computing decoding in one step.
        """
        self.vae.disable_tiling()

225
226
    def enable_model_cpu_offload(self, gpu_id=0):
        r"""
227
228
229
230
        Offload all models to CPU to reduce memory usage with a low impact on performance. Moves one whole model at a
        time to the GPU when its `forward` method is called, and the model remains in GPU until the next model runs.
        Memory savings are lower than using `enable_sequential_cpu_offload`, but performance is much better due to the
        iterative execution of the `unet`.
231
232
233
234
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
235
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
236
237
238

        device = torch.device(f"cuda:{gpu_id}")

239
240
241
242
        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
            torch.cuda.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)

243
244
245
246
247
248
249
250
251
252
        hook = None
        for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
            _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)

        if self.safety_checker is not None:
            _, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)

        # We'll offload the last model manually.
        self.final_offload_hook = hook

253
254
255
256
257
258
259
260
261
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
262
        lora_scale: Optional[float] = None,
263
    ):
264
265
266
267
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
268
             prompt (`str` or `List[str]`, *optional*):
269
270
271
272
273
274
275
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
276
            negative_prompt (`str` or `List[str]`, *optional*):
277
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
278
279
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
280
281
282
283
284
285
286
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
287
288
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
289
        """
290
291
292
293
294
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

295
296
297
298
299
300
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]
301

302
        if prompt_embeds is None:
303
304
305
306
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

307
308
309
310
311
312
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
313
            )
314
315
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
Patrick von Platen's avatar
Patrick von Platen committed
316

317
318
319
320
321
322
323
324
325
326
            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
Patrick von Platen's avatar
Patrick von Platen committed
327

328
329
330
331
            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None
332

333
334
335
336
337
338
            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

339
340
341
342
343
344
345
346
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
347
348

        bs_embed, seq_len, _ = prompt_embeds.shape
349
        # duplicate text embeddings for each generation per prompt, using mps friendly method
350
351
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
352
353

        # get unconditional embeddings for classifier free guidance
354
        if do_classifier_free_guidance and negative_prompt_embeds is None:
355
356
357
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
358
            elif prompt is not None and type(prompt) is not type(negative_prompt):
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

374
375
376
377
            # textual inversion: procecss multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

378
            max_length = prompt_embeds.shape[1]
379
380
381
382
383
384
385
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
Patrick von Platen's avatar
Patrick von Platen committed
386
387
388
389
390
391

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

392
            negative_prompt_embeds = self.text_encoder(
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
396
            negative_prompt_embeds = negative_prompt_embeds[0]
397

398
        if do_classifier_free_guidance:
399
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
400
401
            seq_len = negative_prompt_embeds.shape[1]

402
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
403
404
405

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
406
407
408
409

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
410
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
411

412
        return prompt_embeds
413

414
    def run_safety_checker(self, image, device, dtype):
415
416
417
418
419
420
421
422
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
423
424
425
426
427
428
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    def decode_latents(self, latents):
429
430
431
432
433
        warnings.warn(
            "The decode_latents method is deprecated and will be removed in a future version. Please"
            " use VaeImageProcessor instead",
            FutureWarning,
        )
434
        latents = 1 / self.vae.config.scaling_factor * latents
435
        image = self.vae.decode(latents, return_dict=False)[0]
436
        image = (image / 2 + 0.5).clamp(0, 1)
437
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

458
459
460
461
462
463
464
465
466
467
    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
468
469
470
471
472
473
474
475
476
477
478
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

505
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
506
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
507
508
509
510
511
512
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

513
        if latents is None:
514
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
515
516
517
518
519
520
521
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

Suraj Patil's avatar
Suraj Patil committed
522
    @torch.no_grad()
523
    @replace_example_docstring(EXAMPLE_DOC_STRING)
Suraj Patil's avatar
Suraj Patil committed
524
525
    def __call__(
        self,
526
        prompt: Union[str, List[str]] = None,
527
528
        height: Optional[int] = None,
        width: Optional[int] = None,
529
530
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
531
        negative_prompt: Optional[Union[str, List[str]]] = None,
532
        num_images_per_prompt: Optional[int] = 1,
533
        eta: float = 0.0,
534
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
535
        latents: Optional[torch.FloatTensor] = None,
536
537
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
Suraj Patil's avatar
Suraj Patil committed
538
        output_type: Optional[str] = "pil",
539
        return_dict: bool = True,
540
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
541
        callback_steps: int = 1,
542
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
543
        guidance_rescale: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
544
    ):
545
        r"""
546
        The call function to the pipeline for generation.
547
548

        Args:
549
            prompt (`str` or `List[str]`, *optional*):
550
551
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
552
                The height in pixels of the generated image.
553
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
554
555
556
557
558
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
559
560
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
561
            negative_prompt (`str` or `List[str]`, *optional*):
562
563
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
564
565
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
566
            eta (`float`, *optional*, defaults to 0.0):
567
568
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
569
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
570
571
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
572
            latents (`torch.FloatTensor`, *optional*):
573
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
574
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
575
                tensor is generated by sampling using the supplied random `generator`.
576
            prompt_embeds (`torch.FloatTensor`, *optional*):
577
578
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
579
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
580
581
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
582
            output_type (`str`, *optional*, defaults to `"pil"`):
583
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
584
585
586
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
587
            callback (`Callable`, *optional*):
588
589
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
590
            callback_steps (`int`, *optional*, defaults to 1):
591
592
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
593
            cross_attention_kwargs (`dict`, *optional*):
594
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
Patrick von Platen's avatar
Patrick von Platen committed
595
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
596
            guidance_rescale (`float`, *optional*, defaults to 0.7):
597
598
599
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.
600

601
602
        Examples:

603
        Returns:
604
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
605
606
607
608
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
609
        """
610
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
611
612
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
Suraj Patil's avatar
Suraj Patil committed
613

614
        # 1. Check inputs. Raise error if not correct
615
616
617
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )
618

619
        # 2. Define call parameters
620
621
622
623
624
625
626
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

Anton Lozhkov's avatar
Anton Lozhkov committed
627
        device = self._execution_device
Suraj Patil's avatar
Suraj Patil committed
628
629
630
631
632
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

633
        # 3. Encode input prompt
634
635
636
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
637
638
639
640
641
642
643
644
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
645
            lora_scale=text_encoder_lora_scale,
646
        )
647

648
        # 4. Prepare timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
649
        self.scheduler.set_timesteps(num_inference_steps, device=device)
650
651
652
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
653
        num_channels_latents = self.unet.config.in_channels
654
655
656
657
658
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
659
            prompt_embeds.dtype,
660
661
662
663
            device,
            generator,
            latents,
        )
Suraj Patil's avatar
Suraj Patil committed
664

665
666
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
hlky's avatar
hlky committed
667

668
        # 7. Denoising loop
669
670
671
672
673
674
675
676
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
677
678
679
680
681
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
682
683
                    return_dict=False,
                )[0]
684
685
686
687
688
689

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

690
691
692
693
                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

694
                # compute the previous noisy sample x_t -> x_t-1
695
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
696
697

                # call the callback, if provided
698
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
699
700
701
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)
702

703
704
705
706
        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
707
708
            image = latents
            has_nsfw_concept = None
Suraj Patil's avatar
Suraj Patil committed
709

710
711
        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
712
        else:
713
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
714

715
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
Suraj Patil's avatar
Suraj Patil committed
716

717
718
719
720
        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

721
722
723
724
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)