pipeline_stable_diffusion.py 24.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
import inspect
16
from typing import Callable, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
17
18
19

import torch

20
from diffusers.utils import is_accelerate_available
Suraj Patil's avatar
Suraj Patil committed
21
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
Suraj Patil's avatar
Suraj Patil committed
22

23
from ...configuration_utils import FrozenDict
Suraj Patil's avatar
Suraj Patil committed
24
25
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
hlky's avatar
hlky committed
26
27
from ...schedulers import (
    DDIMScheduler,
28
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
29
30
31
32
33
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
34
from ...utils import deprecate, logging
35
from . import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
36
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
37
38


39
40
41
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


Suraj Patil's avatar
Suraj Patil committed
42
class StableDiffusionPipeline(DiffusionPipeline):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
61
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
62
63
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
64
            Classification module that estimates whether generated images could be considered offensive or harmful.
apolinario's avatar
apolinario committed
65
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
66
67
68
69
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

Suraj Patil's avatar
Suraj Patil committed
70
71
72
73
74
75
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
hlky's avatar
hlky committed
76
        scheduler: Union[
77
78
79
80
81
82
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
83
        ],
Suraj Patil's avatar
Suraj Patil committed
84
85
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
Suraj Patil's avatar
Suraj Patil committed
86
87
    ):
        super().__init__()
88
89

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
90
            deprecation_message = (
91
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
92
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
93
94
95
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
96
                " file"
97
            )
98
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
99
100
101
102
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

103
104
105
106
107
108
109
110
111
112
113
114
115
        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

116
117
        if safety_checker is None:
            logger.warn(
118
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
119
120
121
122
123
124
125
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

Suraj Patil's avatar
Suraj Patil committed
126
127
128
129
130
131
132
133
134
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Suraj Patil's avatar
Suraj Patil committed
135

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def enable_xformers_memory_efficient_attention(self):
        r"""
        Enable memory efficient attention as implemented in xformers.

        When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference
        time. Speed up at training time is not guaranteed.

        Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention
        is used.
        """
        self.unet.set_use_memory_efficient_attention_xformers(True)

    def disable_xformers_memory_efficient_attention(self):
        r"""
        Disable memory efficient attention as implemented in xformers.
        """
        self.unet.set_use_memory_efficient_attention_xformers(False)

154
    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
155
156
157
        r"""
        Enable sliced attention computation.

Pedro Cuenca's avatar
Pedro Cuenca committed
158
159
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
160
161
162

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
Pedro Cuenca's avatar
Pedro Cuenca committed
163
164
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
165
166
                `attention_head_dim` must be a multiple of `slice_size`.
        """
167
168
169
170
171
172
173
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
174
175
176
177
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
Patrick von Platen's avatar
Patrick von Platen committed
178
179
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)
180

181
    def enable_sequential_cpu_offload(self):
182
183
184
185
186
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
187
188
189
190
191
192
193
194
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

        device = torch.device("cuda")

        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
195
196
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)
197

Anton Lozhkov's avatar
Anton Lozhkov committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
239
            truncation=True,
240
241
242
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
243
        untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
244

245
246
        if not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
        text_embeddings = self.text_encoder(text_input_ids.to(device))[0]

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        return text_embeddings

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, prompt, height, width, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // 8, width // 8)
        if latents is None:
            if device.type == "mps":
                # randn does not work reproducibly on mps
                latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
            else:
                latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

Suraj Patil's avatar
Suraj Patil committed
368
369
370
371
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
372
373
374
375
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
376
        negative_prompt: Optional[Union[str, List[str]]] = None,
377
        num_images_per_prompt: Optional[int] = 1,
378
        eta: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
379
        generator: Optional[torch.Generator] = None,
380
        latents: Optional[torch.FloatTensor] = None,
Suraj Patil's avatar
Suraj Patil committed
381
        output_type: Optional[str] = "pil",
382
        return_dict: bool = True,
383
384
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
Pedro Cuenca's avatar
Pedro Cuenca committed
385
        **kwargs,
Suraj Patil's avatar
Suraj Patil committed
386
    ):
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
406
407
408
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
409
410
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
411
412
413
414
415
416
417
418
419
420
421
422
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
423
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
424
425
426
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
427
428
429
430
431
432
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
433
434

        Returns:
435
436
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
437
438
439
440
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
Suraj Patil's avatar
Suraj Patil committed
441

442
443
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)
444

445
446
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
Anton Lozhkov's avatar
Anton Lozhkov committed
447
        device = self._execution_device
Suraj Patil's avatar
Suraj Patil committed
448
449
450
451
452
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

453
        # 3. Encode input prompt
454
455
456
        text_embeddings = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )
457

458
        # 4. Prepare timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
459
        self.scheduler.set_timesteps(num_inference_steps, device=device)
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )
Suraj Patil's avatar
Suraj Patil committed
474

475
476
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
hlky's avatar
hlky committed
477

478
479
        # 7. Denoising loop
        for i, t in enumerate(self.progress_bar(timesteps)):
Suraj Patil's avatar
Suraj Patil committed
480
481
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
482
            latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
Suraj Patil's avatar
Suraj Patil committed
483
484

            # predict the noise residual
485
            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
Suraj Patil's avatar
Suraj Patil committed
486
487
488
489
490
491
492

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
493
            latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
Suraj Patil's avatar
Suraj Patil committed
494

495
496
497
498
            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

499
500
        # 8. Post-processing
        image = self.decode_latents(latents)
Suraj Patil's avatar
Suraj Patil committed
501

502
503
        # 9. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
Suraj Patil's avatar
Suraj Patil committed
504

505
        # 10. Convert to PIL
Suraj Patil's avatar
Suraj Patil committed
506
507
508
        if output_type == "pil":
            image = self.numpy_to_pil(image)

509
510
511
512
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)