pipeline_stable_diffusion.py 27.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Suraj Patil's avatar
Suraj Patil committed
15
import inspect
16
from typing import Callable, List, Optional, Union
Suraj Patil's avatar
Suraj Patil committed
17
18
19

import torch

20
from diffusers.utils import is_accelerate_available
21
from packaging import version
Suraj Patil's avatar
Suraj Patil committed
22
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
Suraj Patil's avatar
Suraj Patil committed
23

24
from ...configuration_utils import FrozenDict
Suraj Patil's avatar
Suraj Patil committed
25
26
from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
hlky's avatar
hlky committed
27
28
from ...schedulers import (
    DDIMScheduler,
29
    DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
)
35
from ...utils import deprecate, logging
36
from . import StableDiffusionPipelineOutput
Suraj Patil's avatar
Suraj Patil committed
37
from .safety_checker import StableDiffusionSafetyChecker
Suraj Patil's avatar
Suraj Patil committed
38
39


40
41
42
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


Suraj Patil's avatar
Suraj Patil committed
43
class StableDiffusionPipeline(DiffusionPipeline):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    r"""
    Pipeline for text-to-image generation using Stable Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
62
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
63
64
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
65
            Classification module that estimates whether generated images could be considered offensive or harmful.
apolinario's avatar
apolinario committed
66
            Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
67
68
69
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """
70
    _optional_components = ["safety_checker", "feature_extractor"]
71

Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
hlky's avatar
hlky committed
78
        scheduler: Union[
79
80
81
82
83
84
            DDIMScheduler,
            PNDMScheduler,
            LMSDiscreteScheduler,
            EulerDiscreteScheduler,
            EulerAncestralDiscreteScheduler,
            DPMSolverMultistepScheduler,
hlky's avatar
hlky committed
85
        ],
Suraj Patil's avatar
Suraj Patil committed
86
87
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
88
        requires_safety_checker: bool = True,
Suraj Patil's avatar
Suraj Patil committed
89
90
    ):
        super().__init__()
91
92

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
93
            deprecation_message = (
94
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
Yuta Hayashibe's avatar
Yuta Hayashibe committed
95
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
96
97
98
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
99
                " file"
100
            )
101
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
102
103
104
105
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

106
107
108
109
110
111
112
113
114
115
116
117
118
        if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

119
        if safety_checker is None and requires_safety_checker:
120
            logger.warning(
121
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
122
123
124
125
126
127
128
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

129
130
131
132
133
134
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

135
136
137
138
139
140
141
        is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
            version.parse(unet.config._diffusers_version).base_version
        ) < version.parse("0.9.0.dev0")
        is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
Pedro Cuenca's avatar
Pedro Cuenca committed
142
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
143
144
145
146
147
148
149
150
151
152
153
154
155
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
                " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
            )
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)

Suraj Patil's avatar
Suraj Patil committed
156
157
158
159
160
161
162
163
164
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
Patrick von Platen's avatar
Patrick von Platen committed
165
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
166
        self.register_to_config(requires_safety_checker=requires_safety_checker)
Suraj Patil's avatar
Suraj Patil committed
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding.

        When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
        steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

184
    def enable_sequential_cpu_offload(self, gpu_id=0):
185
186
187
188
189
        r"""
        Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
        text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
        `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
        """
190
191
192
193
194
        if is_accelerate_available():
            from accelerate import cpu_offload
        else:
            raise ImportError("Please install accelerate via `pip install accelerate`")

195
        device = torch.device(f"cuda:{gpu_id}")
196

197
        for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
198
199
            if cpu_offloaded_model is not None:
                cpu_offload(cpu_offloaded_model, device)
200

201
202
203
        if self.safety_checker is not None:
            # TODO(Patrick) - there is currently a bug with cpu offload of nn.Parameter in accelerate
            # fix by only offloading self.safety_checker for now
Patrick von Platen's avatar
Patrick von Platen committed
204
            cpu_offload(self.safety_checker.vision_model, device)
205

Anton Lozhkov's avatar
Anton Lozhkov committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
        hooks.
        """
        if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
            return self.device
        for module in self.unet.modules():
            if (
                hasattr(module, "_hf_hook")
                and hasattr(module._hf_hook, "execution_device")
                and module._hf_hook.execution_device is not None
            ):
                return torch.device(module._hf_hook.execution_device)
        return self.device

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def _encode_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
        """
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
247
            truncation=True,
248
249
250
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
251
        untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids
252

253
254
        if not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
255
256
257
258
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
262
263
264
265
266
267
268
269

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        text_embeddings = self.text_encoder(
            text_input_ids.to(device),
            attention_mask=attention_mask,
        )
        text_embeddings = text_embeddings[0]
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            max_length = text_input_ids.shape[-1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )
Patrick von Platen's avatar
Patrick von Platen committed
305
306
307
308
309
310
311
312
313
314
315

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            uncond_embeddings = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            uncond_embeddings = uncond_embeddings[0]
316
317
318
319
320
321
322
323
324
325
326
327
328

            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = uncond_embeddings.shape[1]
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        return text_embeddings

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        else:
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(self, prompt, height, width, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
Patrick von Platen's avatar
Patrick von Platen committed
380
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        if latents is None:
            if device.type == "mps":
                # randn does not work reproducibly on mps
                latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
            else:
                latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
        else:
            if latents.shape != shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

Suraj Patil's avatar
Suraj Patil committed
396
397
398
399
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
400
401
        height: Optional[int] = None,
        width: Optional[int] = None,
402
403
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
404
        negative_prompt: Optional[Union[str, List[str]]] = None,
405
        num_images_per_prompt: Optional[int] = 1,
406
        eta: float = 0.0,
Suraj Patil's avatar
Suraj Patil committed
407
        generator: Optional[torch.Generator] = None,
408
        latents: Optional[torch.FloatTensor] = None,
Suraj Patil's avatar
Suraj Patil committed
409
        output_type: Optional[str] = "pil",
410
        return_dict: bool = True,
411
412
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
Suraj Patil's avatar
Suraj Patil committed
413
    ):
414
415
416
417
418
419
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
Patrick von Platen's avatar
Patrick von Platen committed
420
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
421
                The height in pixels of the generated image.
Patrick von Platen's avatar
Patrick von Platen committed
422
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
423
424
425
426
427
428
429
430
431
432
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
433
434
435
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
436
437
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
438
439
440
441
442
443
444
445
446
447
448
449
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
450
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
451
452
453
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
454
455
456
457
458
459
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
460
461

        Returns:
462
463
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
464
465
466
467
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
468
        # 0. Default height and width to unet
Patrick von Platen's avatar
Patrick von Platen committed
469
470
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
Suraj Patil's avatar
Suraj Patil committed
471

472
473
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps)
474

475
476
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
Anton Lozhkov's avatar
Anton Lozhkov committed
477
        device = self._execution_device
Suraj Patil's avatar
Suraj Patil committed
478
479
480
481
482
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

483
        # 3. Encode input prompt
484
485
486
        text_embeddings = self._encode_prompt(
            prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
        )
487

488
        # 4. Prepare timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
489
        self.scheduler.set_timesteps(num_inference_steps, device=device)
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            text_embeddings.dtype,
            device,
            generator,
            latents,
        )
Suraj Patil's avatar
Suraj Patil committed
504

505
506
        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
hlky's avatar
hlky committed
507

508
        # 7. Denoising loop
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                    # compute the previous noisy sample x_t -> x_t-1
                    latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                # call the callback, if provided
528
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
529
530
531
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)
532

533
534
        # 8. Post-processing
        image = self.decode_latents(latents)
Suraj Patil's avatar
Suraj Patil committed
535

536
537
        # 9. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)
Suraj Patil's avatar
Suraj Patil committed
538

539
        # 10. Convert to PIL
Suraj Patil's avatar
Suraj Patil committed
540
541
542
        if output_type == "pil":
            image = self.numpy_to_pil(image)

543
544
545
546
        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)