test_stable_diffusion_img2img.py 20 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23
24
25

from diffusers import (
    AutoencoderKL,
26
    DDIMScheduler,
27
    DPMSolverMultistepScheduler,
28
29
30
31
32
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
33
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
34
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
35

36
37
from ...test_pipelines_common import PipelineTesterMixin

38
39
40
41

torch.backends.cuda.matmul.allow_tf32 = False


42
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
43
    pipeline_class = StableDiffusionImg2ImgPipeline
44

45
    def get_dummy_components(self):
46
        torch.manual_seed(0)
47
        unet = UNet2DConditionModel(
48
49
50
51
52
53
54
55
56
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
57
        scheduler = PNDMScheduler(skip_prk_steps=True)
58
        torch.manual_seed(0)
59
        vae = AutoencoderKL(
60
61
62
63
64
65
66
67
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
68
        text_encoder_config = CLIPTextConfig(
69
70
71
72
73
74
75
76
77
78
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
79
80
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
81

82
83
84
85
86
87
88
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
89
            "feature_extractor": None,
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
108

109
    def test_stable_diffusion_img2img_default_case(self):
110
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
111
112
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
113
114
115
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

116
117
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
118
119
120
121
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
122

123
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
124
125
126

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
127
128
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
129
130
131
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

132
        inputs = self.get_dummy_inputs(device)
133
        negative_prompt = "french fries"
134
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
135
136
137
138
139
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
140

141
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
142
143
144

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
145
146
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
147
148
149
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

150
151
152
153
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
154
155
156
157
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
158

159
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
160
161
162

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
163
164
165
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
166
        )
167
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
168
169
170
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

171
172
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
173
174
175
176
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
177

178
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
179
180

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
181
182
183
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
184
185
186
187
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test num_images_per_prompt=1 (default)
188
189
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs).images
190
191
192
193
194

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
195
196
197
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs).images
198
199
200
201
202

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
203
204
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
205
206
207
208
209

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
210
211
212
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
213
214
215

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

232
233

@slow
234
@require_torch_gpu
235
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
236
237
238
239
240
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

241
242
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
243
        init_image = load_image(
244
245
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
246
        )
247
248
249
250
251
252
253
254
255
256
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
257

258
259
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
260
261
262
263
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

264
265
266
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
267

268
        assert image.shape == (1, 512, 768, 3)
269
270
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

271
        assert np.abs(expected_slice - image_slice).max() < 1e-3
272

273
274
275
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
276
277
278
279
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

280
281
282
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
283

284
        assert image.shape == (1, 512, 768, 3)
285
286
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

287
        assert np.abs(expected_slice - image_slice).max() < 1e-3
288

289
290
291
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
292
293
294
295
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

296
297
298
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
299

300
        assert image.shape == (1, 512, 768, 3)
301
302
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

303
        assert np.abs(expected_slice - image_slice).max() < 1e-3
304
305
306
307

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

308
309
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
310
311
            nonlocal number_of_steps
            number_of_steps += 1
312
            if step == 1:
313
314
315
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
316
317
318
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
319
            elif step == 2:
320
321
322
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
323
324
325
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
326

327
        callback_fn.has_been_called = False
328
329

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
330
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
331
        )
332
        pipe = pipe.to(torch_device)
333
334
335
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

336
337
338
339
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
340
341
342
343

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
344
        torch.cuda.reset_peak_memory_stats()
345
346

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
347
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
348
        )
349
        pipe = pipe.to(torch_device)
350
351
352
353
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

354
355
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
356
357

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
358
359
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

421
        generator = torch.manual_seed(0)
422
423
424
425
426
427
428
429
430
431
432
433
434
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
435
436
437
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
438

439
440
441
442
443
444
445
446
447

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

448
449
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3