test_stable_diffusion_inpaint.py 54 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
18
import traceback
19
20
21
22
import unittest

import numpy as np
import torch
23
from huggingface_hub import hf_hub_download
24
25
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
26
27

from diffusers import (
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
28
    AsymmetricAutoencoderKL,
29
    AutoencoderKL,
30
    DDIMScheduler,
31
    DPMSolverMultistepScheduler,
32
    LMSDiscreteScheduler,
33
34
35
36
    PNDMScheduler,
    StableDiffusionInpaintPipeline,
    UNet2DConditionModel,
)
37
from diffusers.models.attention_processor import AttnProcessor
38
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
39
40
from diffusers.utils.testing_utils import (
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
41
42
43
44
    floats_tensor,
    load_image,
    load_numpy,
    nightly,
Dhruv Nair's avatar
Dhruv Nair committed
45
    require_python39_or_higher,
46
47
48
    require_torch_2,
    require_torch_gpu,
    run_test_in_subprocess,
Dhruv Nair's avatar
Dhruv Nair committed
49
50
    slow,
    torch_device,
51
)
52

53
54
55
56
57
from ..pipeline_params import (
    TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
    TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
    TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
58
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
59

60

61
enable_full_determinism()
62
63


64
65
66
67
68
69
70
71
72
73
74
75
# Will be run via run_test_in_subprocess
def _test_inpaint_compile(in_queue, out_queue, timeout):
    error = None
    try:
        inputs = in_queue.get(timeout=timeout)
        torch_device = inputs.pop("torch_device")
        seed = inputs.pop("seed")
        inputs["generator"] = torch.Generator(device=torch_device).manual_seed(seed)

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
76
        pipe.unet.set_default_attn_processor()
77
78
79
80
81
82
83
84
85
86
87
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe.unet.to(memory_format=torch.channels_last)
        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)

        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
88
        expected_slice = np.array([0.0689, 0.0699, 0.0790, 0.0536, 0.0470, 0.0488, 0.041, 0.0508, 0.04179])
89
90
91
92
93
94
95
96
97
        assert np.abs(expected_slice - image_slice).max() < 3e-3
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


98
99
100
class StableDiffusionInpaintPipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
101
    pipeline_class = StableDiffusionInpaintPipeline
102
103
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
104
105
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
106
    image_latents_params = frozenset([])
107
    callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"mask", "masked_image_latents"})
108

109
    def get_dummy_components(self):
110
        torch.manual_seed(0)
111
        unet = UNet2DConditionModel(
112
113
114
115
116
117
118
119
120
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=9,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
121
        scheduler = PNDMScheduler(skip_prk_steps=True)
122
        torch.manual_seed(0)
123
        vae = AutoencoderKL(
124
125
126
127
128
129
130
131
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
132
        text_encoder_config = CLIPTextConfig(
133
134
135
136
137
138
139
140
141
142
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
143
        text_encoder = CLIPTextModel(text_encoder_config)
144
145
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

146
147
148
149
150
151
152
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
153
            "feature_extractor": None,
154
155
156
        }
        return components

157
    def get_dummy_inputs(self, device, seed=0, img_res=64, output_pil=True):
158
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        if output_pil:
            # Get random floats in [0, 1] as image
            image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
            image = image.cpu().permute(0, 2, 3, 1)[0]
            mask_image = torch.ones_like(image)
            # Convert image and mask_image to [0, 255]
            image = 255 * image
            mask_image = 255 * mask_image
            # Convert to PIL image
            init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((img_res, img_res))
            mask_image = Image.fromarray(np.uint8(mask_image)).convert("RGB").resize((img_res, img_res))
        else:
            # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
            image = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
            # Convert image to [-1, 1]
            init_image = 2.0 * image - 1.0
            mask_image = torch.ones((1, 1, img_res, img_res), device=device)

177
178
179
180
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
181

182
183
184
185
186
187
188
189
190
191
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
192

193
194
195
196
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
197
198
199
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

200
201
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
202
203
        image_slice = image[0, -3:, -3:, -1]

204
        assert image.shape == (1, 64, 64, 3)
205
        expected_slice = np.array([0.4703, 0.5697, 0.3879, 0.5470, 0.6042, 0.4413, 0.5078, 0.4728, 0.4469])
206

207
208
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

209
210
    def test_stable_diffusion_inpaint_image_tensor(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
211
212
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
213
214
215
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

216
217
218
        inputs = self.get_dummy_inputs(device)
        output = sd_pipe(**inputs)
        out_pil = output.images
219

220
221
222
223
224
        inputs = self.get_dummy_inputs(device)
        inputs["image"] = torch.tensor(np.array(inputs["image"]) / 127.5 - 1).permute(2, 0, 1).unsqueeze(0)
        inputs["mask_image"] = torch.tensor(np.array(inputs["mask_image"]) / 255).permute(2, 0, 1)[:1].unsqueeze(0)
        output = sd_pipe(**inputs)
        out_tensor = output.images
225

226
227
        assert out_pil.shape == (1, 64, 64, 3)
        assert np.abs(out_pil.flatten() - out_tensor.flatten()).max() < 5e-2
228

229
230
231
    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_stable_diffusion_inpaint_strength_zero_test(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)

        # check that the pipeline raises value error when num_inference_steps is < 1
        inputs["strength"] = 0.01
        with self.assertRaises(ValueError):
            sd_pipe(**inputs).images

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    def test_stable_diffusion_inpaint_mask_latents(self):
        device = "cpu"
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # normal mask + normal image
        ##  `image`: pil, `mask_image``: pil, `masked_image_latents``: None
        inputs = self.get_dummy_inputs(device)
        inputs["strength"] = 0.9
        out_0 = sd_pipe(**inputs).images

        # image latents + mask latents
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
        mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
        masked_image = image * (mask < 0.5)

        generator = torch.Generator(device=device).manual_seed(0)
        image_latents = (
            sd_pipe.vae.encode(image).latent_dist.sample(generator=generator) * sd_pipe.vae.config.scaling_factor
        )
        torch.randn((1, 4, 32, 32), generator=generator)
        mask_latents = (
            sd_pipe.vae.encode(masked_image).latent_dist.sample(generator=generator)
            * sd_pipe.vae.config.scaling_factor
        )
        inputs["image"] = image_latents
        inputs["masked_image_latents"] = mask_latents
        inputs["mask_image"] = mask
        inputs["strength"] = 0.9
        generator = torch.Generator(device=device).manual_seed(0)
        torch.randn((1, 4, 32, 32), generator=generator)
        inputs["generator"] = generator
        out_1 = sd_pipe(**inputs).images
        assert np.abs(out_0 - out_1).max() < 1e-2

283

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
class StableDiffusionSimpleInpaintPipelineFastTests(StableDiffusionInpaintPipelineFastTests):
    pipeline_class = StableDiffusionInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess

    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
        scheduler = PNDMScheduler(skip_prk_steps=True)
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
        # Get random floats in [0, 1] as image with spatial size (img_res, img_res)
        image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
        image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
        # Convert images to [-1, 1]
        init_image1 = 2.0 * image1 - 1.0
        init_image2 = 2.0 * image2 - 1.0

        # empty mask
        mask_image = torch.zeros((1, 1, img_res, img_res), device=device)

        if str(device).startswith("mps"):
            generator1 = torch.manual_seed(seed)
            generator2 = torch.manual_seed(seed)
        else:
            generator1 = torch.Generator(device=device).manual_seed(seed)
            generator2 = torch.Generator(device=device).manual_seed(seed)

        inputs = {
            "prompt": ["A painting of a squirrel eating a burger"] * 2,
            "image": [init_image1, init_image2],
            "mask_image": [mask_image] * 2,
            "generator": [generator1, generator2],
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

368
369
370
371
372
373
374
375
376
377
378
379
    def test_stable_diffusion_inpaint(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
380
        expected_slice = np.array([0.6584, 0.5424, 0.5649, 0.5449, 0.5897, 0.6111, 0.5404, 0.5463, 0.5214])
381
382
383

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    def test_stable_diffusion_inpaint_2_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test to confirm if we pass two same image, we will get same output
        inputs = self.get_dummy_inputs(device)
        gen1 = torch.Generator(device=device).manual_seed(0)
        gen2 = torch.Generator(device=device).manual_seed(0)
        for name in ["prompt", "image", "mask_image"]:
            inputs[name] = [inputs[name]] * 2
        inputs["generator"] = [gen1, gen2]
        images = sd_pipe(**inputs).images

        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4

        # test to confirm that if we pass two different images, we will get different output
        inputs = self.get_dummy_inputs_2images(device)
        images = sd_pipe(**inputs).images
        assert images.shape == (2, 64, 64, 3)

        image_slice1 = images[0, -3:, -3:, -1]
        image_slice2 = images[1, -3:, -3:, -1]
        assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2

415

416
@slow
417
@require_torch_gpu
418
419
420
421
class StableDiffusionInpaintPipelineSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

422
423
424
425
426
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

427
428
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
429
        init_image = load_image(
430
431
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
432
433
        )
        mask_image = load_image(
434
435
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
436
        )
437
438
439
440
441
442
443
444
445
446
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
447

448
449
450
451
    def test_stable_diffusion_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
452
453
454
455
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

456
457
458
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
459

460
        assert image.shape == (1, 512, 512, 3)
461
462
        expected_slice = np.array([0.0427, 0.0460, 0.0483, 0.0460, 0.0584, 0.0521, 0.1549, 0.1695, 0.1794])

463
        assert np.abs(expected_slice - image_slice).max() < 6e-4
464
465
466

    def test_stable_diffusion_inpaint_fp16(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
467
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
468
        )
469
        pipe.unet.set_default_attn_processor()
470
471
472
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
473

474
475
476
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
477

478
        assert image.shape == (1, 512, 512, 3)
479
        expected_slice = np.array([0.1509, 0.1245, 0.1672, 0.1655, 0.1519, 0.1226, 0.1462, 0.1567, 0.2451])
480
        assert np.abs(expected_slice - image_slice).max() < 1e-1
481

482
    def test_stable_diffusion_inpaint_pndm(self):
483
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
484
            "runwayml/stable-diffusion-inpainting", safety_checker=None
485
        )
486
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
487
488
489
490
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

491
492
493
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
494

495
        assert image.shape == (1, 512, 512, 3)
496
497
        expected_slice = np.array([0.0425, 0.0273, 0.0344, 0.1694, 0.1727, 0.1812, 0.3256, 0.3311, 0.3272])

498
        assert np.abs(expected_slice - image_slice).max() < 5e-3
499

500
501
502
    def test_stable_diffusion_inpaint_k_lms(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
503
        )
504
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
505
506
507
508
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

509
510
511
512
513
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
514
515
        expected_slice = np.array([0.9314, 0.7575, 0.9432, 0.8885, 0.9028, 0.7298, 0.9811, 0.9667, 0.7633])

516
        assert np.abs(expected_slice - image_slice).max() < 6e-3
517

518
519
520
521
522
523
    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe = StableDiffusionInpaintPipeline.from_pretrained(
524
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
525
        )
526
527
528
529
530
531
532
533
534
535
536
537
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
538
    @require_python39_or_higher
539
    @require_torch_2
540
    def test_inpaint_compile(self):
541
542
543
544
545
546
547
        seed = 0
        inputs = self.get_inputs(torch_device, seed=seed)
        # Can't pickle a Generator object
        del inputs["generator"]
        inputs["torch_device"] = torch_device
        inputs["seed"] = seed
        run_test_in_subprocess(test_case=self, target_func=_test_inpaint_compile, inputs=inputs)
548

549
    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
Patrick von Platen's avatar
Patrick von Platen committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)
567

568
569
570
571
572
    def test_stable_diffusion_inpaint_strength_test(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
573
        pipe.unet.set_default_attn_processor()
574
575
576
577
578
579
580
581
582
583
584
585
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
586
587
        expected_slice = np.array([0.2728, 0.2803, 0.2665, 0.2511, 0.2774, 0.2586, 0.2391, 0.2392, 0.2582])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
588

589
590
    def test_stable_diffusion_simple_inpaint_ddim(self):
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
591
        pipe.unet.set_default_attn_processor()
592
593
594
595
596
597
598
599
600
601
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
602
603
        expected_slice = np.array([0.3757, 0.3875, 0.4445, 0.4353, 0.3780, 0.4513, 0.3965, 0.3984, 0.4362])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    def test_download_local(self):
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt"

        pipe = StableDiffusionInpaintPipeline.from_single_file(ckpt_path)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image_ckpt = pipe(**inputs).images[0]

        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.unet.set_attn_processor(AttnProcessor())
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        image = pipe(**inputs).images[0]

639
        assert np.max(np.abs(image - image_ckpt)) < 5e-4
640

641

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineAsymmetricAutoencoderKLSlowTests(unittest.TestCase):
    def setUp(self):
        super().setUp()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
        )
        mask_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
        )
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
680
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
681
682
683
684
685
686
687
688
689
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
690
        expected_slice = np.array([0.0522, 0.0604, 0.0596, 0.0449, 0.0493, 0.0427, 0.1186, 0.1289, 0.1442])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
691

692
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
693
694
695
696
697
698
699
700

    def test_stable_diffusion_inpaint_fp16(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16, safety_checker=None
        )
701
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
        pipe.vae = vae
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
        expected_slice = np.array([0.1343, 0.1406, 0.1440, 0.1504, 0.1729, 0.0989, 0.1807, 0.2822, 0.1179])

        assert np.abs(expected_slice - image_slice).max() < 5e-2

    def test_stable_diffusion_inpaint_pndm(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
721
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
722
723
724
725
726
727
728
729
730
731
732
        pipe.vae = vae
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
733
        expected_slice = np.array([0.0966, 0.1083, 0.1148, 0.1422, 0.1318, 0.1197, 0.3702, 0.3537, 0.3288])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
734
735
736
737
738
739
740
741

        assert np.abs(expected_slice - image_slice).max() < 5e-3

    def test_stable_diffusion_inpaint_k_lms(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
742
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
743
744
745
746
747
748
749
750
751
752
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, 253:256, 253:256, -1].flatten()
        assert image.shape == (1, 512, 512, 3)
753
        expected_slice = np.array([0.8931, 0.8683, 0.8965, 0.8501, 0.8592, 0.9118, 0.8734, 0.7463, 0.8990])
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
        assert np.abs(expected_slice - image_slice).max() < 6e-3

    def test_stable_diffusion_inpaint_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None, torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.45 GB is allocated
        assert mem_bytes < 2.45 * 10**9

Dhruv Nair's avatar
Dhruv Nair committed
780
    @require_python39_or_higher
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    @require_torch_2
    def test_inpaint_compile(self):
        pass

    def test_stable_diffusion_inpaint_pil_input_resolution_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5",
        )
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input image to a random size (one that would cause a tensor mismatch error)
        inputs["image"] = inputs["image"].resize((127, 127))
        inputs["mask_image"] = inputs["mask_image"].resize((127, 127))
        inputs["height"] = 128
        inputs["width"] = 128
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, inputs["height"], inputs["width"], 3)

    def test_stable_diffusion_inpaint_strength_test(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", safety_checker=None
        )
813
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
        pipe.vae = vae
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        # change input strength
        inputs["strength"] = 0.75
        image = pipe(**inputs).images
        # verify that the returned image has the same height and width as the input height and width
        assert image.shape == (1, 512, 512, 3)

        image_slice = image[0, 253:256, 253:256, -1].flatten()
        expected_slice = np.array([0.2458, 0.2576, 0.3124, 0.2679, 0.2669, 0.2796, 0.2872, 0.2975, 0.2661])
        assert np.abs(expected_slice - image_slice).max() < 3e-3

    def test_stable_diffusion_simple_inpaint_ddim(self):
        vae = AsymmetricAutoencoderKL.from_pretrained("cross-attention/asymmetric-autoencoder-kl-x-1-5")
        pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
        pipe.vae = vae
835
        pipe.unet.set_default_attn_processor()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
836
837
838
839
840
841
842
843
844
845
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images

        image_slice = image[0, 253:256, 253:256, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
846
847
        expected_slice = np.array([0.3296, 0.4041, 0.4097, 0.4145, 0.4342, 0.4152, 0.4927, 0.4931, 0.4430])
        assert np.abs(expected_slice - image_slice).max() < 1e-3
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

    def test_download_local(self):
        vae = AsymmetricAutoencoderKL.from_pretrained(
            "cross-attention/asymmetric-autoencoder-kl-x-1-5", torch_dtype=torch.float16
        )
        filename = hf_hub_download("runwayml/stable-diffusion-inpainting", filename="sd-v1-5-inpainting.ckpt")

        pipe = StableDiffusionInpaintPipeline.from_single_file(filename, torch_dtype=torch.float16)
        pipe.vae = vae
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.to("cuda")

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 1
        image_out = pipe(**inputs).images[0]

        assert image_out.shape == (512, 512, 3)

    def test_download_ckpt_diff_format_is_same(self):
        pass


870
871
872
873
874
875
876
@nightly
@require_torch_gpu
class StableDiffusionInpaintPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()
877

878
879
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
880
        init_image = load_image(
881
882
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_image.png"
883
884
        )
        mask_image = load_image(
885
886
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/input_bench_mask.png"
887
        )
888
889
890
891
892
893
894
895
896
897
        inputs = {
            "prompt": "Face of a yellow cat, high resolution, sitting on a park bench",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
898

899
900
901
902
    def test_inpaint_ddim(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
903

904
905
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
906

907
908
909
910
911
912
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
913

914
915
916
917
918
919
920
921
    def test_inpaint_pndm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = PNDMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
922

923
924
925
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_pndm.npy"
926
        )
927
928
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
929

930
931
932
933
934
    def test_inpaint_lms(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
935

936
937
        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]
938

939
940
941
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_lms.npy"
942
        )
943
944
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
945

946
947
948
949
950
    def test_inpaint_dpm(self):
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained("runwayml/stable-diffusion-inpainting")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)
951

952
953
954
        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]
955

956
957
958
        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_inpaint/stable_diffusion_inpaint_dpm_multi.npy"
959
        )
960
961
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3
962

Patrick von Platen's avatar
Patrick von Platen committed
963

964
965
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
    def test_pil_inputs(self):
966
967
        height, width = 32, 32
        im = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
968
        im = Image.fromarray(im)
969
        mask = np.random.randint(0, 255, (height, width), dtype=np.uint8) > 127.5
970
971
        mask = Image.fromarray((mask * 255).astype(np.uint8))

972
        t_mask, t_masked, t_image = prepare_mask_and_masked_image(im, mask, height, width, return_image=True)
973
974
975

        self.assertTrue(isinstance(t_mask, torch.Tensor))
        self.assertTrue(isinstance(t_masked, torch.Tensor))
976
        self.assertTrue(isinstance(t_image, torch.Tensor))
977
978
979

        self.assertEqual(t_mask.ndim, 4)
        self.assertEqual(t_masked.ndim, 4)
980
        self.assertEqual(t_image.ndim, 4)
981

982
983
        self.assertEqual(t_mask.shape, (1, 1, height, width))
        self.assertEqual(t_masked.shape, (1, 3, height, width))
984
        self.assertEqual(t_image.shape, (1, 3, height, width))
985
986
987

        self.assertTrue(t_mask.dtype == torch.float32)
        self.assertTrue(t_masked.dtype == torch.float32)
988
        self.assertTrue(t_image.dtype == torch.float32)
989
990
991
992
993

        self.assertTrue(t_mask.min() >= 0.0)
        self.assertTrue(t_mask.max() <= 1.0)
        self.assertTrue(t_masked.min() >= -1.0)
        self.assertTrue(t_masked.min() <= 1.0)
994
995
        self.assertTrue(t_image.min() >= -1.0)
        self.assertTrue(t_image.min() >= -1.0)
996
997
998
999

        self.assertTrue(t_mask.sum() > 0.0)

    def test_np_inputs(self):
1000
1001
1002
        height, width = 32, 32

        im_np = np.random.randint(0, 255, (height, width, 3), dtype=np.uint8)
1003
        im_pil = Image.fromarray(im_np)
Patrick von Platen's avatar
Patrick von Platen committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        mask_np = (
            np.random.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=np.uint8,
            )
            > 127.5
        )
1016
1017
        mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))

1018
1019
1020
1021
1022
1023
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
        )
        t_mask_pil, t_masked_pil, t_image_pil = prepare_mask_and_masked_image(
            im_pil, mask_pil, height, width, return_image=True
        )
1024
1025
1026

        self.assertTrue((t_mask_np == t_mask_pil).all())
        self.assertTrue((t_masked_np == t_masked_pil).all())
1027
        self.assertTrue((t_image_np == t_image_pil).all())
1028
1029

    def test_torch_3D_2D_inputs(self):
1030
1031
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1054
1055
1056
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1057
1058
1059
1060
1061
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1062
        )
1063
1064
1065

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1066
        self.assertTrue((t_image_tensor == t_image_np).all())
1067
1068

    def test_torch_3D_3D_inputs(self):
1069
1070
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
        im_tensor = torch.randint(
            0,
            255,
            (
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1094
1095
1096
        im_np = im_tensor.numpy().transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1097
1098
1099
1100
1101
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1102
        )
1103
1104
1105

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1106
        self.assertTrue((t_image_tensor == t_image_np).all())
1107
1108

    def test_torch_4D_2D_inputs(self):
1109
1110
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1134
1135
1136
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()

1137
1138
1139
1140
1141
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1142
        )
1143
1144
1145

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1146
        self.assertTrue((t_image_tensor == t_image_np).all())
1147
1148

    def test_torch_4D_3D_inputs(self):
1149
1150
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1175
1176
1177
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0]

1178
1179
1180
1181
1182
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1183
        )
1184
1185
1186

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1187
        self.assertTrue((t_image_tensor == t_image_np).all())
1188
1189

    def test_torch_4D_4D_inputs(self):
1190
1191
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        im_tensor = torch.randint(
            0,
            255,
            (
                1,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    1,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1217
1218
1219
        im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
        mask_np = mask_tensor.numpy()[0][0]

1220
1221
1222
1223
1224
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
        )
        t_mask_np, t_masked_np, t_image_np = prepare_mask_and_masked_image(
            im_np, mask_np, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1225
        )
1226
1227
1228

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1229
        self.assertTrue((t_image_tensor == t_image_np).all())
1230
1231

    def test_torch_batch_4D_3D(self):
1232
1233
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1258
1259
1260
1261

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy() for mask in mask_tensor]

1262
1263
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1264
        )
1265
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1266
1267
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1268
        t_image_np = torch.cat([n[2] for n in nps])
1269
1270
1271

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1272
        self.assertTrue((t_image_tensor == t_image_np).all())
1273
1274

    def test_torch_batch_4D_4D(self):
1275
1276
        height, width = 32, 32

Patrick von Platen's avatar
Patrick von Platen committed
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
        im_tensor = torch.randint(
            0,
            255,
            (
                2,
                3,
                height,
                width,
            ),
            dtype=torch.uint8,
        )
        mask_tensor = (
            torch.randint(
                0,
                255,
                (
                    2,
                    1,
                    height,
                    width,
                ),
                dtype=torch.uint8,
            )
            > 127.5
        )
1302
1303
1304
1305

        im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
        mask_nps = [mask.numpy()[0] for mask in mask_tensor]

1306
1307
        t_mask_tensor, t_masked_tensor, t_image_tensor = prepare_mask_and_masked_image(
            im_tensor / 127.5 - 1, mask_tensor, height, width, return_image=True
Patrick von Platen's avatar
Patrick von Platen committed
1308
        )
1309
        nps = [prepare_mask_and_masked_image(i, m, height, width, return_image=True) for i, m in zip(im_nps, mask_nps)]
1310
1311
        t_mask_np = torch.cat([n[0] for n in nps])
        t_masked_np = torch.cat([n[1] for n in nps])
1312
        t_image_np = torch.cat([n[2] for n in nps])
1313
1314
1315

        self.assertTrue((t_mask_tensor == t_mask_np).all())
        self.assertTrue((t_masked_tensor == t_masked_np).all())
1316
        self.assertTrue((t_image_tensor == t_image_np).all())
1317
1318

    def test_shape_mismatch(self):
1319
1320
        height, width = 32, 32

1321
1322
        # test height and width
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
            prepare_mask_and_masked_image(
                torch.randn(
                    3,
                    height,
                    width,
                ),
                torch.randn(64, 64),
                height,
                width,
1332
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1333
            )
1334
1335
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 64, 64),
                height,
                width,
1346
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1347
            )
1348
1349
        # test batch dim
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
            prepare_mask_and_masked_image(
                torch.randn(
                    2,
                    3,
                    height,
                    width,
                ),
                torch.randn(4, 1, 64, 64),
                height,
                width,
1360
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1361
            )
1362
1363

    def test_type_mismatch(self):
1364
1365
        height, width = 32, 32

1366
1367
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                height,
                width,
1381
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1382
            )
1383
1384
        # test tensors-only
        with self.assertRaises(TypeError):
Patrick von Platen's avatar
Patrick von Platen committed
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ).numpy(),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1398
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1399
            )
1400
1401

    def test_channels_first(self):
1402
1403
        height, width = 32, 32

1404
1405
        # test channels first for 3D tensors
        with self.assertRaises(AssertionError):
Patrick von Platen's avatar
Patrick von Platen committed
1406
1407
1408
1409
1410
1411
1412
1413
1414
            prepare_mask_and_masked_image(
                torch.rand(height, width, 3),
                torch.rand(
                    3,
                    height,
                    width,
                ),
                height,
                width,
1415
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1416
            )
1417
1418

    def test_tensor_range(self):
1419
1420
        height, width = 32, 32

1421
1422
        # test im <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * 2,
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1436
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1437
            )
1438
1439
        # test im >= -1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
            prepare_mask_and_masked_image(
                torch.ones(
                    3,
                    height,
                    width,
                )
                * (-2),
                torch.rand(
                    height,
                    width,
                ),
                height,
                width,
1453
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1454
            )
1455
1456
        # test mask <= 1
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * 2,
                height,
                width,
1470
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1471
            )
1472
1473
        # test mask >= 0
        with self.assertRaises(ValueError):
Patrick von Platen's avatar
Patrick von Platen committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
            prepare_mask_and_masked_image(
                torch.rand(
                    3,
                    height,
                    width,
                ),
                torch.ones(
                    height,
                    width,
                )
                * -1,
                height,
                width,
1487
                return_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
1488
            )