test_stable_diffusion.py 24.4 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
22
23
24
25

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
26
    DPMSolverMultistepScheduler,
27
28
29
30
31
32
33
34
    EulerAncestralDiscreteScheduler,
    EulerDiscreteScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionPipeline,
    UNet2DConditionModel,
    logging,
)
35
36
37
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
Dhruv Nair's avatar
Dhruv Nair committed
38
39
    load_numpy,
    nightly,
40
41
    numpy_cosine_similarity_distance,
    require_torch_gpu,
Dhruv Nair's avatar
Dhruv Nair committed
42
43
    slow,
    torch_device,
44
)
45

46
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
47
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
48
49


50
enable_full_determinism()
51
52


53
54
55
class StableDiffusion2PipelineFastTests(
    PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
):
56
    pipeline_class = StableDiffusionPipeline
57
58
    params = TEXT_TO_IMAGE_PARAMS
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
59
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
60
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
61

62
    def get_dummy_components(self):
63
        torch.manual_seed(0)
64
        unet = UNet2DConditionModel(
65
66
67
68
69
70
71
72
73
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
            # SD2-specific config below
Will Berman's avatar
Will Berman committed
74
            attention_head_dim=(2, 4),
75
76
            use_linear_projection=True,
        )
77
78
79
80
81
82
83
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
84
        torch.manual_seed(0)
85
        vae = AutoencoderKL(
86
87
88
89
90
91
92
93
94
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
95
        text_encoder_config = CLIPTextConfig(
96
97
98
99
100
101
102
103
104
105
106
107
108
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=512,
        )
109
        text_encoder = CLIPTextModel(text_encoder_config)
110
111
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
136
137
138

    def test_stable_diffusion_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
139
140
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionPipeline(**components)
141
142
143
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

144
145
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
146
147
148
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
149
        expected_slice = np.array([0.5753, 0.6113, 0.5005, 0.5036, 0.5464, 0.4725, 0.4982, 0.4865, 0.4861])
150
151
152
153
154

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_pndm(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
155
156
157
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        sd_pipe = StableDiffusionPipeline(**components)
158
159
160
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

161
162
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
163
164
165
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
166
        expected_slice = np.array([0.5121, 0.5714, 0.4827, 0.5057, 0.5646, 0.4766, 0.5189, 0.4895, 0.4990])
167

168
169
170
171
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
172
173
174
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
175
176
177
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

178
179
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
180
181
182
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
183
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
184

185
186
187
188
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler_ancestral(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
189
190
191
        components = self.get_dummy_components()
        components["scheduler"] = EulerAncestralDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
192
193
194
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

195
196
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
197
198
199
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
200
        expected_slice = np.array([0.4864, 0.5440, 0.4842, 0.4994, 0.5543, 0.4846, 0.5196, 0.4942, 0.5063])
201

202
203
204
205
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_k_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
206
207
208
        components = self.get_dummy_components()
        components["scheduler"] = EulerDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
209
210
211
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

212
213
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
214
215
216
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
217
        expected_slice = np.array([0.4865, 0.5439, 0.4840, 0.4995, 0.5543, 0.4846, 0.5199, 0.4942, 0.5061])
218

219
220
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    def test_stable_diffusion_unflawed(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = DDIMScheduler.from_config(
            components["scheduler"].config, timestep_spacing="trailing"
        )
        sd_pipe = StableDiffusionPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["guidance_rescale"] = 0.7
        inputs["num_inference_steps"] = 10
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)
        expected_slice = np.array([0.4736, 0.5405, 0.4705, 0.4955, 0.5675, 0.4812, 0.5310, 0.4967, 0.5064])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

242
    def test_stable_diffusion_long_prompt(self):
243
244
245
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        sd_pipe = StableDiffusionPipeline(**components)
246
247
248
249
250
251
252
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        do_classifier_free_guidance = True
        negative_prompt = None
        num_images_per_prompt = 1
        logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion")
253
        logger.setLevel(logging.WARNING)
254
255
256

        prompt = 25 * "@"
        with CaptureLogger(logger) as cap_logger_3:
257
            text_embeddings_3, negeative_text_embeddings_3 = sd_pipe.encode_prompt(
258
259
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
260
261
            if negeative_text_embeddings_3 is not None:
                text_embeddings_3 = torch.cat([negeative_text_embeddings_3, text_embeddings_3])
262
263
264

        prompt = 100 * "@"
        with CaptureLogger(logger) as cap_logger:
265
            text_embeddings, negative_embeddings = sd_pipe.encode_prompt(
266
267
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
268
269
            if negative_embeddings is not None:
                text_embeddings = torch.cat([negative_embeddings, text_embeddings])
270
271
272

        negative_prompt = "Hello"
        with CaptureLogger(logger) as cap_logger_2:
273
            text_embeddings_2, negative_text_embeddings_2 = sd_pipe.encode_prompt(
274
275
                prompt, torch_device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
            )
276
277
            if negative_text_embeddings_2 is not None:
                text_embeddings_2 = torch.cat([negative_text_embeddings_2, text_embeddings_2])
278
279
280
281
282
283
284
285
286

        assert text_embeddings_3.shape == text_embeddings_2.shape == text_embeddings.shape
        assert text_embeddings.shape[1] == 77

        assert cap_logger.out == cap_logger_2.out
        # 100 - 77 + 1 (BOS token) + 1 (EOS token) = 25
        assert cap_logger.out.count("@") == 25
        assert cap_logger_3.out == ""

287
288
289
290
291
292
    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

293
294
295

@slow
@require_torch_gpu
296
class StableDiffusion2PipelineSlowTests(unittest.TestCase):
297
298
299
300
301
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

302
303
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
304
305
306
307
308
309
310
311
312
313
314
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
315

316
317
318
319
    def test_stable_diffusion_default_ddim(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
320

321
322
323
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
324
325

        assert image.shape == (1, 512, 512, 3)
326
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
327
        assert np.abs(image_slice - expected_slice).max() < 7e-3
328

329
330
331
332
333
    def test_stable_diffusion_pndm(self):
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
334

335
336
337
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
338
339

        assert image.shape == (1, 512, 512, 3)
340
        expected_slice = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506])
341
        assert np.abs(image_slice - expected_slice).max() < 7e-3
342
343

    def test_stable_diffusion_k_lms(self):
344
345
346
347
        pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base")
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
348

349
350
351
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
352
353

        assert image.shape == (1, 512, 512, 3)
354
        expected_slice = np.array([0.10440, 0.13115, 0.11100, 0.10141, 0.11440, 0.07215, 0.11332, 0.09693, 0.10006])
355
        assert np.abs(image_slice - expected_slice).max() < 3e-3
356

357
    def test_stable_diffusion_attention_slicing(self):
358
        torch.cuda.reset_peak_memory_stats()
359
        pipe = StableDiffusionPipeline.from_pretrained(
360
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
361
        )
362
        pipe.unet.set_default_attn_processor()
363
        pipe = pipe.to(torch_device)
364
365
        pipe.set_progress_bar_config(disable=None)

366
        # enable attention slicing
367
        pipe.enable_attention_slicing()
368
369
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image_sliced = pipe(**inputs).images
370
371
372

        mem_bytes = torch.cuda.max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()
373
374
        # make sure that less than 3.3 GB is allocated
        assert mem_bytes < 3.3 * 10**9
375

376
        # disable slicing
377
        pipe.disable_attention_slicing()
378
        pipe.unet.set_default_attn_processor()
379
380
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        image = pipe(**inputs).images
381

382
        # make sure that more than 3.3 GB is allocated
383
        mem_bytes = torch.cuda.max_memory_allocated()
384
385
        assert mem_bytes > 3.3 * 10**9
        assert np.abs(image_sliced - image).max() < 1e-3
386
387
388
389

    def test_stable_diffusion_text2img_intermediate_state(self):
        number_of_steps = 0

390
391
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
392
393
            nonlocal number_of_steps
            number_of_steps += 1
394
            if step == 1:
395
396
397
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
398
399
400
401
402
                expected_slice = np.array(
                    [-0.3862, -0.4507, -1.1729, 0.0686, -1.1045, 0.7124, -1.8301, 0.1903, 1.2773]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
403
            elif step == 2:
404
405
406
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 64)
                latents_slice = latents[0, -3:, -3:, -1]
407
408
409
410
411
                expected_slice = np.array(
                    [0.2720, -0.1863, -0.7383, -0.5029, -0.7534, 0.3970, -0.7646, 0.4468, 1.2686]
                )

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
412

413
        callback_fn.has_been_called = False
414
415

        pipe = StableDiffusionPipeline.from_pretrained(
416
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
417
418
419
420
421
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

422
423
424
425
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == inputs["num_inference_steps"]
426
427
428
429
430
431

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

432
        pipe = StableDiffusionPipeline.from_pretrained(
433
            "stabilityai/stable-diffusion-2-base", torch_dtype=torch.float16
434
435
436
437
438
        )
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()
439

440
441
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
442
443
444
445

        mem_bytes = torch.cuda.max_memory_allocated()
        # make sure that less than 2.8 GB is allocated
        assert mem_bytes < 2.8 * 10**9
446

447
448
449
450
451
452
453
454
455
456
457
458
459
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
460
        pipe.unet.set_default_attn_processor()
461
462
463
464
465
466
467
468
469
470
471
472
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        outputs = pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2-base",
            torch_dtype=torch.float16,
        )
473
        pipe.unet.set_default_attn_processor()
474
475
476
477
478
479
480

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
481
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
482
483
484
        outputs_offloaded = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

485
486
487
488
        images = outputs.images
        images_offloaded = outputs_offloaded.images
        max_diff = numpy_cosine_similarity_distance(images.flatten(), images_offloaded.flatten())
        assert max_diff < 1e-3
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        assert mem_bytes_offloaded < mem_bytes
        assert mem_bytes_offloaded < 3 * 10**9
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

        # With attention slicing
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_attention_slicing()
        _ = pipe(**inputs)
        mem_bytes_slicing = torch.cuda.max_memory_allocated()
        assert mem_bytes_slicing < mem_bytes_offloaded

504
505
506
507
508
509
510
511
512

@nightly
@require_torch_gpu
class StableDiffusion2PipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

513
514
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
        latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "a photograph of an astronaut riding a horse",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 50,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_2_0_default_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_0_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_2_1_default_pndm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_ddim(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_lms(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_euler(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = EulerDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_euler.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_stable_diffusion_dpm(self):
        sd_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base").to(torch_device)
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_2_text2img/stable_diffusion_2_1_base_dpm_multi.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3