test_stable_diffusion_img2img.py 20.3 KB
Newer Older
1
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
2
# Copyright 2023 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
23
24
25

from diffusers import (
    AutoencoderKL,
26
    DDIMScheduler,
27
    DPMSolverMultistepScheduler,
28
29
30
31
32
    LMSDiscreteScheduler,
    PNDMScheduler,
    StableDiffusionImg2ImgPipeline,
    UNet2DConditionModel,
)
33
from diffusers.utils import floats_tensor, load_image, load_numpy, nightly, slow, torch_device
34
from diffusers.utils.testing_utils import require_torch_gpu, skip_mps
35

36
from ...pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
37
38
from ...test_pipelines_common import PipelineTesterMixin

39
40
41
42

torch.backends.cuda.matmul.allow_tf32 = False


43
class StableDiffusionImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
44
    pipeline_class = StableDiffusionImg2ImgPipeline
45
46
47
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
48

49
    def get_dummy_components(self):
50
        torch.manual_seed(0)
51
        unet = UNet2DConditionModel(
52
53
54
55
56
57
58
59
60
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )
61
        scheduler = PNDMScheduler(skip_prk_steps=True)
62
        torch.manual_seed(0)
63
        vae = AutoencoderKL(
64
65
66
67
68
69
70
71
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
72
        text_encoder_config = CLIPTextConfig(
73
74
75
76
77
78
79
80
81
82
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
83
84
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
85

86
87
88
89
90
91
92
        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
93
            "feature_extractor": None,
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs
112

113
    def test_stable_diffusion_img2img_default_case(self):
114
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
115
116
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
117
118
119
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

120
121
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
122
123
124
125
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4492, 0.3865, 0.4222, 0.5854, 0.5139, 0.4379, 0.4193, 0.48, 0.4218])
126

127
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
128
129
130

    def test_stable_diffusion_img2img_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
131
132
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
133
134
135
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

136
        inputs = self.get_dummy_inputs(device)
137
        negative_prompt = "french fries"
138
        output = sd_pipe(**inputs, negative_prompt=negative_prompt)
139
140
141
142
143
        image = output.images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4065, 0.3783, 0.4050, 0.5266, 0.4781, 0.4252, 0.4203, 0.4692, 0.4365])
144

145
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
146
147
148

    def test_stable_diffusion_img2img_multiple_init_images(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
149
150
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
151
152
153
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

154
155
156
157
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * 2
        inputs["image"] = inputs["image"].repeat(2, 1, 1, 1)
        image = sd_pipe(**inputs).images
158
159
160
161
        image_slice = image[-1, -3:, -3:, -1]

        assert image.shape == (2, 32, 32, 3)
        expected_slice = np.array([0.5144, 0.4447, 0.4735, 0.6676, 0.5526, 0.5454, 0.645, 0.5149, 0.4689])
162

163
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
164
165
166

    def test_stable_diffusion_img2img_k_lms(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
167
168
169
        components = self.get_dummy_components()
        components["scheduler"] = LMSDiscreteScheduler(
            beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
170
        )
171
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
172
173
174
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

175
176
        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
177
178
179
180
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 32, 32, 3)
        expected_slice = np.array([0.4367, 0.4986, 0.4372, 0.6706, 0.5665, 0.444, 0.5864, 0.6019, 0.5203])
181

182
        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
183
184

    def test_stable_diffusion_img2img_num_images_per_prompt(self):
185
186
187
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionImg2ImgPipeline(**components)
188
189
190
191
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        # test num_images_per_prompt=1 (default)
192
193
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs).images
194
195
196
197
198

        assert images.shape == (1, 32, 32, 3)

        # test num_images_per_prompt=1 (default) for batch of prompts
        batch_size = 2
199
200
201
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs).images
202
203
204
205
206

        assert images.shape == (batch_size, 32, 32, 3)

        # test num_images_per_prompt for single prompt
        num_images_per_prompt = 2
207
208
        inputs = self.get_dummy_inputs(device)
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
209
210
211
212
213

        assert images.shape == (num_images_per_prompt, 32, 32, 3)

        # test num_images_per_prompt for batch of prompts
        batch_size = 2
214
215
216
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * batch_size
        images = sd_pipe(**inputs, num_images_per_prompt=num_images_per_prompt).images
217
218
219

        assert images.shape == (batch_size * num_images_per_prompt, 32, 32, 3)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    @skip_mps
    def test_save_load_local(self):
        return super().test_save_load_local()

    @skip_mps
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

    @skip_mps
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

    @skip_mps
    def test_attention_slicing_forward_pass(self):
        return super().test_attention_slicing_forward_pass()

236
237

@slow
238
@require_torch_gpu
239
class StableDiffusionImg2ImgPipelineSlowTests(unittest.TestCase):
240
241
242
243
244
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

245
246
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
247
        init_image = load_image(
248
249
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
250
        )
251
252
253
254
255
256
257
258
259
260
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 3,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs
261

262
263
    def test_stable_diffusion_img2img_default(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
264
265
266
267
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

268
269
270
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
271

272
        assert image.shape == (1, 512, 768, 3)
273
274
        expected_slice = np.array([0.4300, 0.4662, 0.4930, 0.3990, 0.4307, 0.4525, 0.3719, 0.4064, 0.3923])

275
        assert np.abs(expected_slice - image_slice).max() < 1e-3
276

277
278
279
    def test_stable_diffusion_img2img_k_lms(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
280
281
282
283
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

284
285
286
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
287

288
        assert image.shape == (1, 512, 768, 3)
289
290
        expected_slice = np.array([0.0389, 0.0346, 0.0415, 0.0290, 0.0218, 0.0210, 0.0408, 0.0567, 0.0271])

291
        assert np.abs(expected_slice - image_slice).max() < 1e-3
292

293
294
295
    def test_stable_diffusion_img2img_ddim(self):
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", safety_checker=None)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
296
297
298
299
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

300
301
302
        inputs = self.get_inputs(torch_device)
        image = pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1].flatten()
303

304
        assert image.shape == (1, 512, 768, 3)
305
306
        expected_slice = np.array([0.0593, 0.0607, 0.0851, 0.0582, 0.0636, 0.0721, 0.0751, 0.0981, 0.0781])

307
        assert np.abs(expected_slice - image_slice).max() < 1e-3
308
309
310
311

    def test_stable_diffusion_img2img_intermediate_state(self):
        number_of_steps = 0

312
313
        def callback_fn(step: int, timestep: int, latents: torch.FloatTensor) -> None:
            callback_fn.has_been_called = True
314
315
            nonlocal number_of_steps
            number_of_steps += 1
316
            if step == 1:
317
318
319
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
320
321
322
                expected_slice = np.array([-0.4958, 0.5107, 1.1045, 2.7539, 4.6680, 3.8320, 1.5049, 1.8633, 2.6523])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
323
            elif step == 2:
324
325
326
                latents = latents.detach().cpu().numpy()
                assert latents.shape == (1, 4, 64, 96)
                latents_slice = latents[0, -3:, -3:, -1]
327
328
329
                expected_slice = np.array([-0.4956, 0.5078, 1.0918, 2.7520, 4.6484, 3.8125, 1.5146, 1.8633, 2.6367])

                assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2
330

331
        callback_fn.has_been_called = False
332
333

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
334
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
335
        )
336
        pipe = pipe.to(torch_device)
337
338
339
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

340
341
342
343
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        pipe(**inputs, callback=callback_fn, callback_steps=1)
        assert callback_fn.has_been_called
        assert number_of_steps == 2
344
345
346
347

    def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
348
        torch.cuda.reset_peak_memory_stats()
349
350

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
351
            "CompVis/stable-diffusion-v1-4", safety_checker=None, torch_dtype=torch.float16
352
        )
353
        pipe = pipe.to(torch_device)
354
355
356
357
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing(1)
        pipe.enable_sequential_cpu_offload()

358
359
        inputs = self.get_inputs(torch_device, dtype=torch.float16)
        _ = pipe(**inputs)
360
361

        mem_bytes = torch.cuda.max_memory_allocated()
Anton Lozhkov's avatar
Anton Lozhkov committed
362
363
        # make sure that less than 2.2 GB is allocated
        assert mem_bytes < 2.2 * 10**9
364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    def test_stable_diffusion_pipeline_with_model_offloading(self):
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        inputs = self.get_inputs(torch_device, dtype=torch.float16)

        # Normal inference

        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe(**inputs)
        mem_bytes = torch.cuda.max_memory_allocated()

        # With model offloading

        # Reload but don't move to cuda
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            "CompVis/stable-diffusion-v1-4",
            safety_checker=None,
            torch_dtype=torch.float16,
        )

        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        pipe.enable_model_cpu_offload()
        pipe.set_progress_bar_config(disable=None)
        _ = pipe(**inputs)
        mem_bytes_offloaded = torch.cuda.max_memory_allocated()

        assert mem_bytes_offloaded < mem_bytes
        for module in pipe.text_encoder, pipe.unet, pipe.vae:
            assert module.device == torch.device("cpu")

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
        init_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        )
        # resize to resolution that is divisible by 8 but not 16 or 32
        init_image = init_image.resize((760, 504))

        model_id = "CompVis/stable-diffusion-v1-4"
        pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
            model_id,
            safety_checker=None,
        )
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()

        prompt = "A fantasy landscape, trending on artstation"

425
        generator = torch.manual_seed(0)
426
427
428
429
430
431
432
433
434
435
436
437
438
        output = pipe(
            prompt=prompt,
            image=init_image,
            strength=0.75,
            guidance_scale=7.5,
            generator=generator,
            output_type="np",
        )
        image = output.images[0]

        image_slice = image[255:258, 383:386, -1]

        assert image.shape == (504, 760, 3)
439
440
441
        expected_slice = np.array([0.9393, 0.9500, 0.9399, 0.9438, 0.9458, 0.9400, 0.9455, 0.9414, 0.9423])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
442

443
444
445
446
447
448
449
450
451

@nightly
@require_torch_gpu
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

452
453
    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        init_image = load_image(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/sketch-mountains-input.png"
        )
        inputs = {
            "prompt": "a fantasy landscape, concept art, high resolution",
            "image": init_image,
            "generator": generator,
            "num_inference_steps": 50,
            "strength": 0.75,
            "guidance_scale": 7.5,
            "output_type": "numpy",
        }
        return inputs

    def test_img2img_pndm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_pndm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_ddim(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DDIMScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_ddim.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_lms(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_lms.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3

    def test_img2img_dpm(self):
        sd_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        sd_pipe.scheduler = DPMSolverMultistepScheduler.from_config(sd_pipe.scheduler.config)
        sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 30
        image = sd_pipe(**inputs).images[0]

        expected_image = load_numpy(
            "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
            "/stable_diffusion_img2img/stable_diffusion_1_5_dpm.npy"
        )
        max_diff = np.abs(expected_image - image).max()
        assert max_diff < 1e-3