"docs/vscode:/vscode.git/clone" did not exist on "445a176bdea9111bf725719b5eeb1abef8f9d3ad"
test_base.py 14.6 KB
Newer Older
1
2
import re
import unittest
3
from collections.abc import Iterable, Mapping
4
5
6
7
8
9

import backend as F

import dgl.graphbolt as gb
import pytest
import torch
10
from torch.torch_version import TorchVersion
11

12
13
from . import gb_test_utils

14
15
16

@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyTo():
17
18
19
    item_sampler = gb.ItemSampler(
        gb.ItemSet(torch.arange(20), names="seed_nodes"), 4
    )
20
21

    # Invoke CopyTo via class constructor.
22
    dp = gb.CopyTo(item_sampler, "cuda")
23
    for data in dp:
24
        assert data.seed_nodes.device.type == "cuda"
25

26
    # Invoke CopyTo via functional form.
27
    dp = item_sampler.copy_to("cuda")
28
    for data in dp:
29
        assert data.seed_nodes.device.type == "cuda"
30
31


32
33
34
35
36
37
38
@pytest.mark.parametrize(
    "task",
    [
        "node_classification",
        "node_inference",
        "link_prediction",
        "edge_classification",
39
        "extra_attrs",
40
41
42
        "other",
    ],
)
43
@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
44
def test_CopyToWithMiniBatches_original(task):
45
46
    N = 16
    B = 2
47
    if task == "node_classification" or task == "extra_attrs":
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        itemset = gb.ItemSet(
            (torch.arange(N), torch.arange(N)), names=("seed_nodes", "labels")
        )
    elif task == "node_inference":
        itemset = gb.ItemSet(torch.arange(N), names="seed_nodes")
    elif task == "link_prediction":
        itemset = gb.ItemSet(
            (
                torch.arange(2 * N).reshape(-1, 2),
                torch.arange(3 * N).reshape(-1, 3),
            ),
            names=("node_pairs", "negative_dsts"),
        )
    elif task == "edge_classification":
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("node_pairs", "labels"),
        )
    else:
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("node_pairs", "seed_nodes"),
        )
71
    graph = gb_test_utils.rand_csc_graph(100, 0.15, bidirection_edge=True)
72
73
74
75
76
77
78
79
80
81
82
83
84

    features = {}
    keys = [("node", None, "a"), ("node", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(torch.randn(200, 4))
    features[keys[1]] = gb.TorchBasedFeature(torch.randn(200, 4))
    feature_store = gb.BasicFeatureStore(features)

    datapipe = gb.ItemSampler(itemset, batch_size=B)
    datapipe = gb.NeighborSampler(
        datapipe,
        graph,
        fanouts=[torch.LongTensor([2]) for _ in range(2)],
    )
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    if task != "node_inference":
        datapipe = gb.FeatureFetcher(
            datapipe,
            feature_store,
            ["a"],
        )

    if task == "node_classification":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
        ]
    elif task == "node_inference":
        copied_attrs = [
            "seed_nodes",
            "sampled_subgraphs",
            "blocks",
            "labels",
        ]
    elif task == "link_prediction":
        copied_attrs = [
            "compacted_node_pairs",
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "compacted_negative_srcs",
            "compacted_negative_dsts",
            "blocks",
            "positive_node_pairs",
            "negative_node_pairs",
            "node_pairs_with_labels",
        ]
    elif task == "edge_classification":
        copied_attrs = [
            "compacted_node_pairs",
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
            "positive_node_pairs",
            "negative_node_pairs",
            "node_pairs_with_labels",
        ]
132
133
134
135
136
137
138
139
140
    elif task == "extra_attrs":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
            "seed_nodes",
        ]
141
142
143
144
145

    def test_data_device(datapipe):
        for data in datapipe:
            for attr in dir(data):
                var = getattr(data, attr)
146
147
148
149
                if isinstance(var, Mapping):
                    var = var[next(iter(var))]
                elif isinstance(var, Iterable):
                    var = next(iter(var))
150
151
152
153
                if (
                    not callable(var)
                    and not attr.startswith("__")
                    and hasattr(var, "device")
154
                    and var is not None
155
                ):
156
157
158
159
160
161
162
                    if task == "other":
                        assert var.device.type == "cuda"
                    else:
                        if attr in copied_attrs:
                            assert var.device.type == "cuda"
                        else:
                            assert var.device.type == "cpu"
163

164
165
166
167
168
    if task == "extra_attrs":
        extra_attrs = ["seed_nodes"]
    else:
        extra_attrs = None

169
    # Invoke CopyTo via class constructor.
170
    test_data_device(gb.CopyTo(datapipe, "cuda", extra_attrs))
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    # Invoke CopyTo via functional form.
    test_data_device(datapipe.copy_to("cuda", extra_attrs))


@pytest.mark.parametrize(
    "task",
    [
        "node_classification",
        "node_inference",
        "link_prediction",
        "edge_classification",
        "extra_attrs",
    ],
)
@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyToWithMiniBatches(task):
    N = 16
    B = 2
    if task == "node_classification" or task == "extra_attrs":
        itemset = gb.ItemSet(
            (torch.arange(N), torch.arange(N)), names=("seeds", "labels")
        )
    elif task == "node_inference":
        itemset = gb.ItemSet(torch.arange(N), names="seeds")
    elif task == "link_prediction":
        itemset = gb.ItemSet(
            (
                torch.arange(2 * N).reshape(-1, 2),
                torch.arange(N),
            ),
            names=("seeds", "labels"),
        )
    elif task == "edge_classification":
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("seeds", "labels"),
        )
    graph = gb_test_utils.rand_csc_graph(100, 0.15, bidirection_edge=True)

    features = {}
    keys = [("node", None, "a"), ("node", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(torch.randn(200, 4))
    features[keys[1]] = gb.TorchBasedFeature(torch.randn(200, 4))
    feature_store = gb.BasicFeatureStore(features)

    datapipe = gb.ItemSampler(itemset, batch_size=B)
    datapipe = gb.NeighborSampler(
        datapipe,
        graph,
        fanouts=[torch.LongTensor([2]) for _ in range(2)],
    )
    if task != "node_inference":
        datapipe = gb.FeatureFetcher(
            datapipe,
            feature_store,
            ["a"],
        )

    if task == "node_classification":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
237
            "seeds",
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        ]
    elif task == "node_inference":
        copied_attrs = [
            "seeds",
            "sampled_subgraphs",
            "blocks",
            "labels",
        ]
    elif task == "link_prediction" or task == "edge_classification":
        copied_attrs = [
            "labels",
            "compacted_seeds",
            "sampled_subgraphs",
            "indexes",
            "node_features",
            "edge_features",
            "blocks",
255
            "seeds",
256
257
258
259
260
261
262
263
264
        ]
    elif task == "extra_attrs":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
            "seed_nodes",
265
            "seeds",
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        ]

    def test_data_device(datapipe):
        for data in datapipe:
            print(data)
            for attr in dir(data):
                var = getattr(data, attr)
                if isinstance(var, Mapping):
                    var = var[next(iter(var))]
                elif isinstance(var, Iterable):
                    var = next(iter(var))
                if (
                    not callable(var)
                    and not attr.startswith("__")
                    and hasattr(var, "device")
                    and var is not None
                ):
                    if attr in copied_attrs:
                        assert var.device.type == "cuda", attr
                    else:
                        assert var.device.type == "cpu", attr

    if task == "extra_attrs":
        extra_attrs = ["seed_nodes"]
    else:
        extra_attrs = None

    # Invoke CopyTo via class constructor.
    test_data_device(gb.CopyTo(datapipe, "cuda", extra_attrs))
295
296

    # Invoke CopyTo via functional form.
297
    test_data_device(datapipe.copy_to("cuda", extra_attrs))
298
299


300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
def test_etype_tuple_to_str():
    """Convert etype from tuple to string."""
    # Test for expected input.
    c_etype = ("user", "like", "item")
    c_etype_str = gb.etype_tuple_to_str(c_etype)
    assert c_etype_str == "user:like:item"

    # Test for unexpected input: not a tuple.
    c_etype = "user:like:item"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got user:like:item."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)

    # Test for unexpected input: tuple with wrong length.
    c_etype = ("user", "like")
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got ('user', 'like')."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)


def test_etype_str_to_tuple():
    """Convert etype from string to tuple."""
    # Test for expected input.
    c_etype_str = "user:like:item"
    c_etype = gb.etype_str_to_tuple(c_etype_str)
    assert c_etype == ("user", "like", "item")

    # Test for unexpected input: string with wrong format.
    c_etype_str = "user:like"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of 'str:str:str'. "
            "But got user:like."
        ),
    ):
        _ = gb.etype_str_to_tuple(c_etype_str)
347
348
349


def test_isin():
350
351
    elements = torch.tensor([2, 3, 5, 5, 20, 13, 11], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
352
    res = gb.isin(elements, test_elements)
353
354
355
    expected = torch.tensor(
        [True, False, True, True, False, False, False], device=F.ctx()
    )
356
357
358
359
    assert torch.equal(res, expected)


def test_isin_big_data():
360
361
    elements = torch.randint(0, 10000, (10000000,), device=F.ctx())
    test_elements = torch.randint(0, 10000, (500000,), device=F.ctx())
362
363
364
365
366
367
    res = gb.isin(elements, test_elements)
    expected = torch.isin(elements, test_elements)
    assert torch.equal(res, expected)


def test_isin_non_1D_dim():
368
369
    elements = torch.tensor([[2, 3], [5, 5], [20, 13]], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
370
371
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
372
373
    elements = torch.tensor([2, 3, 5, 5, 20, 13], device=F.ctx())
    test_elements = torch.tensor([[2, 5]], device=F.ctx())
374
375
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
376
377


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
@pytest.mark.parametrize(
    "dtype",
    [
        torch.bool,
        torch.uint8,
        torch.int8,
        torch.int16,
        torch.int32,
        torch.int64,
        torch.float16,
        torch.bfloat16,
        torch.float32,
        torch.float64,
    ],
)
@pytest.mark.parametrize("idtype", [torch.int32, torch.int64])
@pytest.mark.parametrize("pinned", [False, True])
def test_index_select(dtype, idtype, pinned):
    if F._default_context_str != "gpu" and pinned:
        pytest.skip("Pinned tests are available only on GPU.")
    tensor = torch.tensor([[2, 3], [5, 5], [20, 13]], dtype=dtype)
    tensor = tensor.pin_memory() if pinned else tensor.to(F.ctx())
    index = torch.tensor([0, 2], dtype=idtype, device=F.ctx())
    gb_result = gb.index_select(tensor, index)
    torch_result = tensor.to(F.ctx())[index.long()]
    assert torch.equal(torch_result, gb_result)


406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
def torch_expand_indptr(indptr, dtype, nodes=None):
    if nodes is None:
        nodes = torch.arange(len(indptr) - 1, dtype=dtype, device=indptr.device)
    return nodes.to(dtype).repeat_interleave(indptr.diff())


@pytest.mark.parametrize("nodes", [None, True])
@pytest.mark.parametrize("dtype", [torch.int32, torch.int64])
def test_expand_indptr(nodes, dtype):
    if nodes:
        nodes = torch.tensor([1, 7, 3, 4, 5, 8], dtype=dtype, device=F.ctx())
    indptr = torch.tensor([0, 2, 2, 7, 10, 12, 20], device=F.ctx())
    torch_result = torch_expand_indptr(indptr, dtype, nodes)
    gb_result = gb.expand_indptr(indptr, dtype, nodes)
    assert torch.equal(torch_result, gb_result)
    gb_result = gb.expand_indptr(indptr, dtype, nodes, indptr[-1].item())
    assert torch.equal(torch_result, gb_result)

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    if TorchVersion(torch.__version__) >= TorchVersion("2.2.0a0"):
        import torch._dynamo as dynamo
        from torch.testing._internal.optests import opcheck

        # Tests torch.compile compatibility
        for output_size in [None, indptr[-1].item()]:
            kwargs = {"node_ids": nodes, "output_size": output_size}
            opcheck(
                torch.ops.graphbolt.expand_indptr,
                (indptr, dtype),
                kwargs,
                test_utils=[
                    "test_schema",
                    "test_autograd_registration",
                    "test_faketensor",
                    "test_aot_dispatch_dynamic",
                ],
                raise_exception=True,
            )

            explanation = dynamo.explain(gb.expand_indptr)(
                indptr, dtype, nodes, output_size
            )
            expected_breaks = -1 if output_size is None else 0
            assert explanation.graph_break_count == expected_breaks

450

451
452
453
454
455
456
457
458
459
460
461
def test_csc_format_base_representation():
    csc_format_base = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 4]),
        indices=torch.tensor([4, 5, 6, 7]),
    )
    expected_result = str(
        """CSCFormatBase(indptr=tensor([0, 2, 4]),
              indices=tensor([4, 5, 6, 7]),
)"""
    )
    assert str(csc_format_base) == expected_result, print(csc_format_base)
462
463
464
465
466
467
468
469


def test_csc_format_base_incorrect_indptr():
    indptr = torch.tensor([0, 2, 4, 6, 7, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4])
    with pytest.raises(AssertionError):
        # The value of last element in indptr is not corresponding to indices.
        csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)