test_base.py 9.04 KB
Newer Older
1
2
import re
import unittest
3
from collections.abc import Iterable, Mapping
4
5
6
7
8
9
10

import backend as F

import dgl.graphbolt as gb
import pytest
import torch

11
12
from . import gb_test_utils

13
14
15

@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyTo():
16
17
18
    item_sampler = gb.ItemSampler(
        gb.ItemSet(torch.arange(20), names="seed_nodes"), 4
    )
19
20

    # Invoke CopyTo via class constructor.
21
    dp = gb.CopyTo(item_sampler, "cuda")
22
    for data in dp:
23
        assert data.seed_nodes.device.type == "cuda"
24

25
    # Invoke CopyTo via functional form.
26
    dp = item_sampler.copy_to("cuda")
27
    for data in dp:
28
        assert data.seed_nodes.device.type == "cuda"
29
30


31
32
33
34
35
36
37
@pytest.mark.parametrize(
    "task",
    [
        "node_classification",
        "node_inference",
        "link_prediction",
        "edge_classification",
38
        "extra_attrs",
39
40
41
        "other",
    ],
)
42
@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
43
def test_CopyToWithMiniBatches(task):
44
45
    N = 16
    B = 2
46
    if task == "node_classification" or task == "extra_attrs":
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
        itemset = gb.ItemSet(
            (torch.arange(N), torch.arange(N)), names=("seed_nodes", "labels")
        )
    elif task == "node_inference":
        itemset = gb.ItemSet(torch.arange(N), names="seed_nodes")
    elif task == "link_prediction":
        itemset = gb.ItemSet(
            (
                torch.arange(2 * N).reshape(-1, 2),
                torch.arange(3 * N).reshape(-1, 3),
            ),
            names=("node_pairs", "negative_dsts"),
        )
    elif task == "edge_classification":
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("node_pairs", "labels"),
        )
    else:
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("node_pairs", "seed_nodes"),
        )
70
    graph = gb_test_utils.rand_csc_graph(100, 0.15, bidirection_edge=True)
71
72
73
74
75
76
77
78
79
80
81
82
83

    features = {}
    keys = [("node", None, "a"), ("node", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(torch.randn(200, 4))
    features[keys[1]] = gb.TorchBasedFeature(torch.randn(200, 4))
    feature_store = gb.BasicFeatureStore(features)

    datapipe = gb.ItemSampler(itemset, batch_size=B)
    datapipe = gb.NeighborSampler(
        datapipe,
        graph,
        fanouts=[torch.LongTensor([2]) for _ in range(2)],
    )
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    if task != "node_inference":
        datapipe = gb.FeatureFetcher(
            datapipe,
            feature_store,
            ["a"],
        )

    if task == "node_classification":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
        ]
    elif task == "node_inference":
        copied_attrs = [
            "seed_nodes",
            "sampled_subgraphs",
            "blocks",
            "labels",
        ]
    elif task == "link_prediction":
        copied_attrs = [
            "compacted_node_pairs",
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "compacted_negative_srcs",
            "compacted_negative_dsts",
            "blocks",
            "positive_node_pairs",
            "negative_node_pairs",
            "node_pairs_with_labels",
        ]
    elif task == "edge_classification":
        copied_attrs = [
            "compacted_node_pairs",
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
            "positive_node_pairs",
            "negative_node_pairs",
            "node_pairs_with_labels",
        ]
131
132
133
134
135
136
137
138
139
    elif task == "extra_attrs":
        copied_attrs = [
            "node_features",
            "edge_features",
            "sampled_subgraphs",
            "labels",
            "blocks",
            "seed_nodes",
        ]
140
141
142
143
144

    def test_data_device(datapipe):
        for data in datapipe:
            for attr in dir(data):
                var = getattr(data, attr)
145
146
147
148
                if isinstance(var, Mapping):
                    var = var[next(iter(var))]
                elif isinstance(var, Iterable):
                    var = next(iter(var))
149
150
151
152
                if (
                    not callable(var)
                    and not attr.startswith("__")
                    and hasattr(var, "device")
153
                    and var is not None
154
                ):
155
156
157
158
159
160
161
                    if task == "other":
                        assert var.device.type == "cuda"
                    else:
                        if attr in copied_attrs:
                            assert var.device.type == "cuda"
                        else:
                            assert var.device.type == "cpu"
162

163
164
165
166
167
    if task == "extra_attrs":
        extra_attrs = ["seed_nodes"]
    else:
        extra_attrs = None

168
    # Invoke CopyTo via class constructor.
169
    test_data_device(gb.CopyTo(datapipe, "cuda", extra_attrs))
170
171

    # Invoke CopyTo via functional form.
172
    test_data_device(datapipe.copy_to("cuda", extra_attrs))
173
174


175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def test_etype_tuple_to_str():
    """Convert etype from tuple to string."""
    # Test for expected input.
    c_etype = ("user", "like", "item")
    c_etype_str = gb.etype_tuple_to_str(c_etype)
    assert c_etype_str == "user:like:item"

    # Test for unexpected input: not a tuple.
    c_etype = "user:like:item"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got user:like:item."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)

    # Test for unexpected input: tuple with wrong length.
    c_etype = ("user", "like")
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got ('user', 'like')."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)


def test_etype_str_to_tuple():
    """Convert etype from string to tuple."""
    # Test for expected input.
    c_etype_str = "user:like:item"
    c_etype = gb.etype_str_to_tuple(c_etype_str)
    assert c_etype == ("user", "like", "item")

    # Test for unexpected input: string with wrong format.
    c_etype_str = "user:like"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of 'str:str:str'. "
            "But got user:like."
        ),
    ):
        _ = gb.etype_str_to_tuple(c_etype_str)
222
223
224


def test_isin():
225
226
    elements = torch.tensor([2, 3, 5, 5, 20, 13, 11], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
227
    res = gb.isin(elements, test_elements)
228
229
230
    expected = torch.tensor(
        [True, False, True, True, False, False, False], device=F.ctx()
    )
231
232
233
234
    assert torch.equal(res, expected)


def test_isin_big_data():
235
236
    elements = torch.randint(0, 10000, (10000000,), device=F.ctx())
    test_elements = torch.randint(0, 10000, (500000,), device=F.ctx())
237
238
239
240
241
242
    res = gb.isin(elements, test_elements)
    expected = torch.isin(elements, test_elements)
    assert torch.equal(res, expected)


def test_isin_non_1D_dim():
243
244
    elements = torch.tensor([[2, 3], [5, 5], [20, 13]], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
245
246
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
247
248
    elements = torch.tensor([2, 3, 5, 5, 20, 13], device=F.ctx())
    test_elements = torch.tensor([[2, 5]], device=F.ctx())
249
250
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
251
252


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def torch_expand_indptr(indptr, dtype, nodes=None):
    if nodes is None:
        nodes = torch.arange(len(indptr) - 1, dtype=dtype, device=indptr.device)
    return nodes.to(dtype).repeat_interleave(indptr.diff())


@pytest.mark.parametrize("nodes", [None, True])
@pytest.mark.parametrize("dtype", [torch.int32, torch.int64])
def test_expand_indptr(nodes, dtype):
    if nodes:
        nodes = torch.tensor([1, 7, 3, 4, 5, 8], dtype=dtype, device=F.ctx())
    indptr = torch.tensor([0, 2, 2, 7, 10, 12, 20], device=F.ctx())
    torch_result = torch_expand_indptr(indptr, dtype, nodes)
    gb_result = gb.expand_indptr(indptr, dtype, nodes)
    assert torch.equal(torch_result, gb_result)
    gb_result = gb.expand_indptr(indptr, dtype, nodes, indptr[-1].item())
    assert torch.equal(torch_result, gb_result)


272
273
274
275
276
277
278
279
280
281
282
def test_csc_format_base_representation():
    csc_format_base = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 4]),
        indices=torch.tensor([4, 5, 6, 7]),
    )
    expected_result = str(
        """CSCFormatBase(indptr=tensor([0, 2, 4]),
              indices=tensor([4, 5, 6, 7]),
)"""
    )
    assert str(csc_format_base) == expected_result, print(csc_format_base)
283
284
285
286
287
288
289
290


def test_csc_format_base_incorrect_indptr():
    indptr = torch.tensor([0, 2, 4, 6, 7, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4])
    with pytest.raises(AssertionError):
        # The value of last element in indptr is not corresponding to indices.
        csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)