"...git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "354d35adb02e943d79014e5713290a4551d3dd01"
Unverified Commit 50cbb0ec authored by Rhett Ying's avatar Rhett Ying Committed by GitHub
Browse files

[GraphBolt] remove single process DGL test (#6729)

parent 836fbb00
""" DGL graphbolt API tests"""
...@@ -8,12 +8,13 @@ import backend as F ...@@ -8,12 +8,13 @@ import backend as F
import dgl import dgl
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils as gbt
import pytest import pytest
import torch import torch
import torch.multiprocessing as mp import torch.multiprocessing as mp
from scipy import sparse as spsp from scipy import sparse as spsp
from .. import gb_test_utils as gbt
torch.manual_seed(3407) torch.manual_seed(3407)
mp.set_sharing_strategy("file_system") mp.set_sharing_strategy("file_system")
......
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import pytest
import torch import torch
from .. import gb_test_utils
def test_InSubgraphSampler_homo(): def test_InSubgraphSampler_homo():
"""Original graph in COO: """Original graph in COO:
......
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import pytest import pytest
import torch import torch
from .. import gb_test_utils
def test_NegativeSampler_invoke(): def test_NegativeSampler_invoke():
# Instantiate graph and required datapipes. # Instantiate graph and required datapipes.
......
...@@ -6,7 +6,6 @@ import tempfile ...@@ -6,7 +6,6 @@ import tempfile
import unittest import unittest
import warnings import warnings
import gb_test_utils as gbt
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pydantic import pydantic
...@@ -16,6 +15,8 @@ import yaml ...@@ -16,6 +15,8 @@ import yaml
from dgl import graphbolt as gb from dgl import graphbolt as gb
from .. import gb_test_utils as gbt
def write_yaml_file(yaml_content, dir): def write_yaml_file(yaml_content, dir):
os.makedirs(os.path.join(dir, "preprocessed"), exist_ok=True) os.makedirs(os.path.join(dir, "preprocessed"), exist_ok=True)
......
...@@ -4,10 +4,11 @@ import unittest ...@@ -4,10 +4,11 @@ import unittest
import backend as F import backend as F
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import pytest import pytest
import torch import torch
from . import gb_test_utils
@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test") @unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyTo(): def test_CopyTo():
......
import os
import unittest
import backend as F import backend as F
import dgl import dgl
import dgl.graphbolt import dgl.graphbolt
import gb_test_utils
import torch import torch
from torchdata.datapipes.iter import Mapper
from . import gb_test_utils
def test_DataLoader(): def test_DataLoader():
......
...@@ -2,11 +2,12 @@ import random ...@@ -2,11 +2,12 @@ import random
from enum import Enum from enum import Enum
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import pytest import pytest
import torch import torch
from torchdata.datapipes.iter import Mapper from torchdata.datapipes.iter import Mapper
from . import gb_test_utils
class MiniBatchType(Enum): class MiniBatchType(Enum):
MiniBatch = 1 MiniBatch = 1
......
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import torch import torch
from . import gb_test_utils
def test_dgl_minibatch_converter(): def test_dgl_minibatch_converter():
N = 32 N = 32
......
import backend as F
import dgl
import dgl.graphbolt
import gb_test_utils
import torch
from torchdata.datapipes.iter import Mapper
def test_DataLoader():
N = 32
B = 4
itemset = dgl.graphbolt.ItemSet(torch.arange(N), names="seed_nodes")
graph = gb_test_utils.rand_csc_graph(200, 0.15, bidirection_edge=True)
features = {}
keys = [("node", None, "a"), ("node", None, "b")]
features[keys[0]] = dgl.graphbolt.TorchBasedFeature(torch.randn(200, 4))
features[keys[1]] = dgl.graphbolt.TorchBasedFeature(torch.randn(200, 4))
feature_store = dgl.graphbolt.BasicFeatureStore(features)
item_sampler = dgl.graphbolt.ItemSampler(itemset, batch_size=B)
subgraph_sampler = dgl.graphbolt.NeighborSampler(
item_sampler,
graph,
fanouts=[torch.LongTensor([2]) for _ in range(2)],
)
feature_fetcher = dgl.graphbolt.FeatureFetcher(
subgraph_sampler,
feature_store,
["a"],
)
device_transferrer = dgl.graphbolt.CopyTo(feature_fetcher, F.ctx())
dataloader = dgl.graphbolt.DataLoader(device_transferrer)
assert len(list(dataloader)) == N // B
import dgl import dgl
import dgl.graphbolt as gb import dgl.graphbolt as gb
import gb_test_utils
import pytest import pytest
import torch import torch
from torchdata.datapipes.iter import Mapper from torchdata.datapipes.iter import Mapper
from . import gb_test_utils
def test_SubgraphSampler_invoke(): def test_SubgraphSampler_invoke():
itemset = gb.ItemSet(torch.arange(10), names="seed_nodes") itemset = gb.ItemSet(torch.arange(10), names="seed_nodes")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment