"examples/faces/training_with_face_landmarks.xml" did not exist on "5ae170c46106a6b234865e16f47ba0fe8a95bf5f"
train_full.py 5.46 KB
Newer Older
hbsun2113's avatar
hbsun2113 committed
1
2
3
4
5
6
7
8
9
"""
Inductive Representation Learning on Large Graphs
Paper: http://papers.nips.cc/paper/6703-inductive-representation-learning-on-large-graphs.pdf
Code: https://github.com/williamleif/graphsage-simple
Simple reference implementation of GraphSAGE.
"""
import argparse
import time
import numpy as np
10
import networkx as nx
hbsun2113's avatar
hbsun2113 committed
11
12
13
import torch
import torch.nn as nn
import torch.nn.functional as F
14
import dgl
hbsun2113's avatar
hbsun2113 committed
15
16
from dgl import DGLGraph
from dgl.data import register_data_args, load_data
17
from dgl.nn.pytorch.conv import SAGEConv
hbsun2113's avatar
hbsun2113 committed
18
19
20
21
22
23
24
25
26
27
28
29
30


class GraphSAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout,
                 aggregator_type):
        super(GraphSAGE, self).__init__()
        self.layers = nn.ModuleList()
31
32
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
hbsun2113's avatar
hbsun2113 committed
33
34

        # input layer
35
        self.layers.append(SAGEConv(in_feats, n_hidden, aggregator_type))
hbsun2113's avatar
hbsun2113 committed
36
37
        # hidden layers
        for i in range(n_layers - 1):
38
            self.layers.append(SAGEConv(n_hidden, n_hidden, aggregator_type))
hbsun2113's avatar
hbsun2113 committed
39
        # output layer
40
41
42
43
44
45
46
47
48
        self.layers.append(SAGEConv(n_hidden, n_classes, aggregator_type)) # activation None

    def forward(self, graph, inputs):
        h = self.dropout(inputs)
        for l, layer in enumerate(self.layers):
            h = layer(graph, h)
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
hbsun2113's avatar
hbsun2113 committed
49
50
51
        return h


52
def evaluate(model, graph, features, labels, nid):
hbsun2113's avatar
hbsun2113 committed
53
54
    model.eval()
    with torch.no_grad():
55
        logits = model(graph, features)
56
57
        logits = logits[nid]
        labels = labels[nid]
hbsun2113's avatar
hbsun2113 committed
58
59
60
61
62
63
64
        _, indices = torch.max(logits, dim=1)
        correct = torch.sum(indices == labels)
        return correct.item() * 1.0 / len(labels)

def main(args):
    # load and preprocess dataset
    data = load_data(args)
65
66
67
68
69
70
    g = data[0]
    features = g.ndata['feat']
    labels = g.ndata['label']
    train_mask = g.ndata['train_mask']
    val_mask = g.ndata['val_mask']
    test_mask = g.ndata['test_mask']
hbsun2113's avatar
hbsun2113 committed
71
    in_feats = features.shape[1]
72
    n_classes = data.num_classes
hbsun2113's avatar
hbsun2113 committed
73
74
75
76
77
78
79
80
    n_edges = data.graph.number_of_edges()
    print("""----Data statistics------'
      #Edges %d
      #Classes %d
      #Train samples %d
      #Val samples %d
      #Test samples %d""" %
          (n_edges, n_classes,
Zihao Ye's avatar
Zihao Ye committed
81
82
83
           train_mask.int().sum().item(),
           val_mask.int().sum().item(),
           test_mask.int().sum().item()))
hbsun2113's avatar
hbsun2113 committed
84
85
86
87
88
89
90
91
92
93
94
95
96

    if args.gpu < 0:
        cuda = False
    else:
        cuda = True
        torch.cuda.set_device(args.gpu)
        features = features.cuda()
        labels = labels.cuda()
        train_mask = train_mask.cuda()
        val_mask = val_mask.cuda()
        test_mask = test_mask.cuda()
        print("use cuda:", args.gpu)

97
98
99
100
    train_nid = train_mask.nonzero().squeeze()
    val_nid = val_mask.nonzero().squeeze()
    test_nid = test_mask.nonzero().squeeze()

hbsun2113's avatar
hbsun2113 committed
101
    # graph preprocess and calculate normalization factor
102
    g = dgl.remove_self_loop(g)
hbsun2113's avatar
hbsun2113 committed
103
    n_edges = g.number_of_edges()
104
105
    if cuda:
        g = g.int().to(args.gpu)
hbsun2113's avatar
hbsun2113 committed
106
107

    # create GraphSAGE model
108
    model = GraphSAGE(in_feats,
hbsun2113's avatar
hbsun2113 committed
109
110
111
112
113
                      args.n_hidden,
                      n_classes,
                      args.n_layers,
                      F.relu,
                      args.dropout,
114
                      args.aggregator_type)
hbsun2113's avatar
hbsun2113 committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128

    if cuda:
        model.cuda()

    # use optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

    # initialize graph
    dur = []
    for epoch in range(args.n_epochs):
        model.train()
        if epoch >= 3:
            t0 = time.time()
        # forward
129
        logits = model(g, features)
130
        loss = F.cross_entropy(logits[train_nid], labels[train_nid])
hbsun2113's avatar
hbsun2113 committed
131
132
133
134
135
136
137
138

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if epoch >= 3:
            dur.append(time.time() - t0)

139
        acc = evaluate(model, g, features, labels, val_nid)
hbsun2113's avatar
hbsun2113 committed
140
141
142
143
144
        print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | "
              "ETputs(KTEPS) {:.2f}".format(epoch, np.mean(dur), loss.item(),
                                            acc, n_edges / np.mean(dur) / 1000))

    print()
145
    acc = evaluate(model, g, features, labels, test_nid)
hbsun2113's avatar
hbsun2113 committed
146
147
148
149
    print("Test Accuracy {:.4f}".format(acc))


if __name__ == '__main__':
150
    parser = argparse.ArgumentParser(description='GraphSAGE')
hbsun2113's avatar
hbsun2113 committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    register_data_args(parser)
    parser.add_argument("--dropout", type=float, default=0.5,
                        help="dropout probability")
    parser.add_argument("--gpu", type=int, default=-1,
                        help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
                        help="learning rate")
    parser.add_argument("--n-epochs", type=int, default=200,
                        help="number of training epochs")
    parser.add_argument("--n-hidden", type=int, default=16,
                        help="number of hidden gcn units")
    parser.add_argument("--n-layers", type=int, default=1,
                        help="number of hidden gcn layers")
    parser.add_argument("--weight-decay", type=float, default=5e-4,
                        help="Weight for L2 loss")
166
167
    parser.add_argument("--aggregator-type", type=str, default="gcn",
                        help="Aggregator type: mean/gcn/pool/lstm")
hbsun2113's avatar
hbsun2113 committed
168
169
170
171
    args = parser.parse_args()
    print(args)

    main(args)