csc_sampling_graph.cc 46.3 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <algorithm>
#include <array>
13
14
#include <cmath>
#include <limits>
15
#include <numeric>
16
17
#include <tuple>
#include <vector>
18

19
#include "./random.h"
20
21
#include "./shared_memory_utils.h"

22
23
24
namespace graphbolt {
namespace sampling {

25
26
static const int kPickleVersion = 6199;

27
CSCSamplingGraph::CSCSamplingGraph(
28
    const torch::Tensor& indptr, const torch::Tensor& indices,
29
    const torch::optional<torch::Tensor>& node_type_offset,
30
31
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
32
    : indptr_(indptr),
33
      indices_(indices),
34
      node_type_offset_(node_type_offset),
35
36
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
37
38
39
40
41
42
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
43
    const torch::Tensor& indptr, const torch::Tensor& indices,
44
    const torch::optional<torch::Tensor>& node_type_offset,
45
46
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
47
48
49
50
51
52
53
54
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
55
56
57
58
59
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
60
  return c10::make_intrusive<CSCSamplingGraph>(
61
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
62
63
}

64
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
65
66
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
67
68
69
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
70
71
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
72
73
74
75
76
77
78
79
80
81
82
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
83
84
85
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
86
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
87
88
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
89
90
91
92
93
94
95
96
97
98
99
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
100
101
}

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
void CSCSamplingGraph::SetState(
    const torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>&
        state) {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  const auto& independent_tensors = state.at("independent_tensors");
  TORCH_CHECK(
      independent_tensors.at("version_number")
          .equal(torch::tensor({kPickleVersion})),
      "Version number mismatches when loading pickled CSCSamplingGraph.")
  indptr_ = independent_tensors.at("indptr");
  indices_ = independent_tensors.at("indices");
  if (independent_tensors.find("node_type_offset") !=
      independent_tensors.end()) {
    node_type_offset_ = independent_tensors.at("node_type_offset");
  }
  if (independent_tensors.find("type_per_edge") != independent_tensors.end()) {
    type_per_edge_ = independent_tensors.at("type_per_edge");
  }
  if (state.find("edge_attributes") != state.end()) {
    edge_attributes_ = state.at("edge_attributes");
  }
}

torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>>
CSCSamplingGraph::GetState() const {
  // State is a dict of dicts. The tensor-type attributes are stored in the dict
  // with key "independent_tensors". The dict-type attributes (edge_attributes)
  // are stored directly with the their name as the key.
  torch::Dict<std::string, torch::Dict<std::string, torch::Tensor>> state;
  torch::Dict<std::string, torch::Tensor> independent_tensors;
  // Serialization version number. It indicates the serialization method of the
  // whole state.
  independent_tensors.insert("version_number", torch::tensor({kPickleVersion}));
  independent_tensors.insert("indptr", indptr_);
  independent_tensors.insert("indices", indices_);
  if (node_type_offset_.has_value()) {
    independent_tensors.insert("node_type_offset", node_type_offset_.value());
  }
  if (type_per_edge_.has_value()) {
    independent_tensors.insert("type_per_edge", type_per_edge_.value());
  }
  state.insert("independent_tensors", independent_tensors);
  if (edge_attributes_.has_value()) {
    state.insert("edge_attributes", edge_attributes_.value());
  }
  return state;
}

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
182
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
183
184
185
186
187
188
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/**
 * @brief Get a lambda function which counts the number of the neighbors to be
 * sampled.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A lambda function (int64_t offset, int64_t num_neighbors) ->
 * torch::Tensor, which takes offset (the starting edge ID of the given node)
 * and num_neighbors (number of neighbors) as params and returns the pick number
 * of the given node.
 */
auto GetNumPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  // If fanouts.size() > 1, returns the total number of all edge types of the
  // given node.
  return [&fanouts, replace, &probs_or_mask, &type_per_edge](
             int64_t offset, int64_t num_neighbors) {
    if (fanouts.size() > 1) {
      return NumPickByEtype(
          fanouts, replace, type_per_edge.value(), probs_or_mask, offset,
          num_neighbors);
    } else {
      return NumPick(fanouts[0], replace, probs_or_mask, offset, num_neighbors);
    }
  };
}

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/**
 * @brief Get a lambda function which contains the sampling process.
 *
 * @param fanouts The number of edges to be sampled for each node with or
 * without considering edge types.
 * @param replace Boolean indicating whether the sample is performed with or
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param type_per_edge A tensor representing the type of each edge, if
 * present.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains sampling algorithm specific arguments.
 *
245
246
247
248
249
 * @return A lambda function: (int64_t offset, int64_t num_neighbors,
 * PickedType* picked_data_ptr) -> torch::Tensor, which takes offset (the
 * starting edge ID of the given node) and num_neighbors (number of neighbors)
 * as params and puts the picked neighbors at the address specified by
 * picked_data_ptr.
250
 */
251
template <SamplerType S>
252
253
254
255
256
257
auto GetPickFn(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
  return [&fanouts, replace, &options, &type_per_edge, &probs_or_mask, args](
258
259
260
261
             int64_t offset, int64_t num_neighbors, auto picked_data_ptr) {
    // If fanouts.size() > 1, perform sampling for each edge type of each
    // node; otherwise just sample once for each node with no regard of edge
    // types.
262
263
264
    if (fanouts.size() > 1) {
      return PickByEtype(
          offset, num_neighbors, fanouts, replace, options,
265
          type_per_edge.value(), probs_or_mask, args, picked_data_ptr);
266
267
268
    } else {
      return Pick(
          offset, num_neighbors, fanouts[0], replace, options, probs_or_mask,
269
          args, picked_data_ptr);
270
271
272
273
    }
  };
}

274
template <typename NumPickFn, typename PickFn>
275
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
276
277
    const torch::Tensor& nodes, bool return_eids, NumPickFn num_pick_fn,
    PickFn pick_fn) const {
278
  const int64_t num_nodes = nodes.size(0);
279
  const auto indptr_options = indptr_.options();
280
  torch::Tensor num_picked_neighbors_per_node =
281
      torch::empty({num_nodes + 1}, indptr_options);
282

283
284
285
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
286
287
288
289
290
  torch::Tensor picked_eids;
  torch::Tensor subgraph_indptr;
  torch::Tensor subgraph_indices;
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;

291
  AT_DISPATCH_INTEGRAL_TYPES(
292
293
294
295
296
297
298
299
      indptr_.scalar_type(), "SampleNeighborsImpl", ([&] {
        const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
        auto num_picked_neighbors_data_ptr =
            num_picked_neighbors_per_node.data_ptr<scalar_t>();
        num_picked_neighbors_data_ptr[0] = 0;
        const auto nodes_data_ptr = nodes.data_ptr<int64_t>();

        // Step 1. Calculate pick number of each node.
300
        torch::parallel_for(
301
302
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
303
                const auto nid = nodes_data_ptr[i];
304
305
306
307
308
309
310
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
                num_picked_neighbors_data_ptr[i + 1] =
                    num_neighbors == 0 ? 0 : num_pick_fn(offset, num_neighbors);
              }
            });

        // Step 2. Calculate prefix sum to get total length and offsets of each
        // node. It's also the indptr of the generated subgraph.
        subgraph_indptr = torch::cumsum(num_picked_neighbors_per_node, 0);

        // Step 3. Allocate the tensor for picked neighbors.
        const auto total_length =
            subgraph_indptr.data_ptr<scalar_t>()[num_nodes];
        picked_eids = torch::empty({total_length}, indptr_options);
        subgraph_indices = torch::empty({total_length}, indices_.options());
        if (type_per_edge_.has_value()) {
          subgraph_type_per_edge =
              torch::empty({total_length}, type_per_edge_.value().options());
        }
329

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        // Step 4. Pick neighbors for each node.
        auto picked_eids_data_ptr = picked_eids.data_ptr<scalar_t>();
        auto subgraph_indptr_data_ptr = subgraph_indptr.data_ptr<scalar_t>();
        torch::parallel_for(
            0, num_nodes, grain_size, [&](int64_t begin, int64_t end) {
              for (int64_t i = begin; i < end; ++i) {
                const auto nid = nodes_data_ptr[i];
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;
                const auto picked_number = num_picked_neighbors_data_ptr[i + 1];
                const auto picked_offset = subgraph_indptr_data_ptr[i];
                if (picked_number > 0) {
                  auto actual_picked_count = pick_fn(
                      offset, num_neighbors,
                      picked_eids_data_ptr + picked_offset);
                  TORCH_CHECK(
                      actual_picked_count == picked_number,
                      "Actual picked count doesn't match the calculated pick "
                      "number.");

                  // Step 5. Calculate other attributes and return the subgraph.
                  AT_DISPATCH_INTEGRAL_TYPES(
                      subgraph_indices.scalar_type(),
                      "IndexSelectSubgraphIndices", ([&] {
                        auto subgraph_indices_data_ptr =
                            subgraph_indices.data_ptr<scalar_t>();
                        auto indices_data_ptr = indices_.data_ptr<scalar_t>();
                        for (auto i = picked_offset;
                             i < picked_offset + picked_number; ++i) {
                          subgraph_indices_data_ptr[i] =
                              indices_data_ptr[picked_eids_data_ptr[i]];
                        }
                      }));
                  if (type_per_edge_.has_value()) {
                    AT_DISPATCH_INTEGRAL_TYPES(
                        subgraph_type_per_edge.value().scalar_type(),
                        "IndexSelectTypePerEdge", ([&] {
                          auto subgraph_type_per_edge_data_ptr =
                              subgraph_type_per_edge.value()
                                  .data_ptr<scalar_t>();
                          auto type_per_edge_data_ptr =
                              type_per_edge_.value().data_ptr<scalar_t>();
                          for (auto i = picked_offset;
                               i < picked_offset + picked_number; ++i) {
                            subgraph_type_per_edge_data_ptr[i] =
                                type_per_edge_data_ptr[picked_eids_data_ptr[i]];
                          }
                        }));
                  }
                }
380
              }
381
            });
382
      }));
383

384
385
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
386

387
  return c10::make_intrusive<SampledSubgraph>(
388
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
389
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
390
391
}

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
407

408
409
410
411
412
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
413
        nodes, return_eids,
414
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
415
416
417
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
418
419
420
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
421
        nodes, return_eids,
422
        GetNumPickFn(fanouts, replace, type_per_edge_, probs_or_mask),
423
424
425
        GetPickFn(
            fanouts, replace, indptr_.options(), type_per_edge_, probs_or_mask,
            args));
426
427
428
  }
}

429
430
431
432
433
434
435
436
437
438
439
440
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

441
442
443
444
445
446
447
448
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
449
      optional_tensors[2], optional_tensors[3], torch::nullopt);
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

471
472
473
474
int64_t NumPick(
    int64_t fanout, bool replace,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
475
476
477
478
479
480
481
482
483
484
485
  int64_t num_valid_neighbors = num_neighbors;
  if (probs_or_mask.has_value()) {
    // Subtract the count of zeros in probs_or_mask.
    AT_DISPATCH_ALL_TYPES(
        probs_or_mask.value().scalar_type(), "CountZero", ([&] {
          scalar_t* probs_data_ptr = probs_or_mask.value().data_ptr<scalar_t>();
          num_valid_neighbors -= std::count(
              probs_data_ptr + offset, probs_data_ptr + offset + num_neighbors,
              0);
        }));
  }
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
  if (num_valid_neighbors == 0 || fanout == -1) return num_valid_neighbors;
  return replace ? fanout : std::min(fanout, num_valid_neighbors);
}

int64_t NumPickByEtype(
    const std::vector<int64_t>& fanouts, bool replace,
    const torch::Tensor& type_per_edge,
    const torch::optional<torch::Tensor>& probs_or_mask, int64_t offset,
    int64_t num_neighbors) {
  int64_t etype_begin = offset;
  const int64_t end = offset + num_neighbors;
  int64_t total_count = 0;
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "NumPickFnByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
          TORCH_CHECK(
              etype >= 0 && etype < (int64_t)fanouts.size(),
              "Etype values exceed the number of fanouts.");
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          int64_t etype_end = etype_end_it - type_per_edge_data;
          // Do sampling for one etype.
          total_count += NumPick(
              fanouts[etype], replace, probs_or_mask, etype_begin,
              etype_end - etype_begin);
          etype_begin = etype_end;
        }
      }));
  return total_count;
}

520
521
522
523
524
525
526
527
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
528
529
530
 *  - When the value is -1, all neighbors will be sampled once regardless of
 * replacement. It is equivalent to selecting all neighbors when the fanout is
 * >= the number of neighbors (and replacement is set to false).
531
532
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
533
 * @param replace Boolean indicating whether the sample is performed with or
534
535
536
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
537
538
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
539
 */
540
template <typename PickedType>
541
inline int64_t UniformPick(
542
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
543
    const torch::TensorOptions& options, PickedType* picked_data_ptr) {
544
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
545
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
546
    return num_neighbors;
547
  } else if (replace) {
548
549
550
551
552
    std::memcpy(
        picked_data_ptr,
        torch::randint(offset, offset + num_neighbors, {fanout}, options)
            .data_ptr<PickedType>(),
        fanout * sizeof(PickedType));
553
    return fanout;
554
  } else {
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    // We use different sampling strategies for different sampling case.
    if (fanout >= num_neighbors / 10) {
      // [Algorithm]
      // This algorithm is conceptually related to the Fisher-Yates
      // shuffle.
      //
      // [Complexity Analysis]
      // This algorithm's memory complexity is O(num_neighbors), but
      // it generates fewer random numbers (O(fanout)).
      //
      // (Compare) Reservoir algorithm is one of the most classical
      // sampling algorithms. Both the reservoir algorithm and our
      // algorithm offer distinct advantages, we need to compare to
      // illustrate our trade-offs.
      // The reservoir algorithm is memory-efficient (O(fanout)) but
      // creates many random numbers (O(num_neighbors)), which is
      // costly.
      //
      // [Practical Consideration]
      // Use this algorithm when `fanout >= num_neighbors / 10` to
      // reduce computation.
      // In this scenarios above, memory complexity is not a concern due
      // to the small size of both `fanout` and `num_neighbors`. And it
      // is efficient to allocate a small amount of memory. So the
      // algorithm performence is great in this case.
      std::vector<PickedType> seq(num_neighbors);
      // Assign the seq with [offset, offset + num_neighbors].
      std::iota(seq.begin(), seq.end(), offset);
      for (int64_t i = 0; i < fanout; ++i) {
        auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
        std::swap(seq[i], seq[j]);
      }
      // Save the randomly sampled fanout elements to the output tensor.
      std::copy(seq.begin(), seq.begin() + fanout, picked_data_ptr);
589
      return fanout;
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    } else if (fanout < 64) {
      // [Algorithm]
      // Use linear search to verify uniqueness.
      //
      // [Complexity Analysis]
      // Since the set of numbers is small (up to 64), so it is more
      // cost-effective for the CPU to use this algorithm.
      auto begin = picked_data_ptr;
      auto end = picked_data_ptr + fanout;

      while (begin != end) {
        // Put the new random number in the last position.
        *begin = RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors);
        // Check if a new value doesn't exist in current
        // range(picked_data_ptr, begin). Otherwise get a new
        // value until we haven't unique range of elements.
        auto it = std::find(picked_data_ptr, begin, *begin);
        if (it == begin) ++begin;
      }
610
      return fanout;
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
    } else {
      // [Algorithm]
      // Use hash-set to verify uniqueness. In the best scenario, the
      // time complexity is O(fanout), assuming no conflicts occur.
      //
      // [Complexity Analysis]
      // Let K = (fanout / num_neighbors), the expected number of extra
      // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
      // means in the worst case scenario, the time complexity is
      // O(num_neighbors^2).
      //
      // [Practical Consideration]
      // In practice, we set the threshold K to 1/10. This trade-off is
      // due to the slower performance of std::unordered_set, which
      // would otherwise increase the sampling cost. By doing so, we
      // achieve a balance between theoretical efficiency and practical
      // performance.
      std::unordered_set<PickedType> picked_set;
      while (static_cast<int64_t>(picked_set.size()) < fanout) {
        picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
            offset, offset + num_neighbors));
      }
      std::copy(picked_set.begin(), picked_set.end(), picked_data_ptr);
634
      return picked_set.size();
635
    }
636
637
638
  }
}

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
657
658
659
660
 *  - When the value is -1, all neighbors with non-zero probability will be
 * sampled once regardless of replacement. It is equivalent to selecting all
 * neighbors with non-zero probability when the fanout is >= the number of
 * neighbors (and replacement is set to false).
661
662
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
663
 * @param replace Boolean indicating whether the sample is performed with or
664
665
666
667
668
669
670
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
671
672
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
673
 */
674
template <typename PickedType>
675
inline int64_t NonUniformPick(
676
677
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
678
679
    const torch::optional<torch::Tensor>& probs_or_mask,
    PickedType* picked_data_ptr) {
680
681
682
683
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
684
  if (num_positive_probs == 0) return 0;
685
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
686
687
688
689
    std::memcpy(
        picked_data_ptr,
        (positive_probs_indices + offset).data_ptr<PickedType>(),
        num_positive_probs * sizeof(PickedType));
690
    return num_positive_probs;
691
692
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    if (fanout == 0) return 0;
    AT_DISPATCH_FLOATING_TYPES(
        local_probs.scalar_type(), "MultinomialSampling", ([&] {
          auto local_probs_data_ptr = local_probs.data_ptr<scalar_t>();
          auto positive_probs_indices_ptr =
              positive_probs_indices.data_ptr<PickedType>();

          if (!replace) {
            // The algorithm is from gumbel softmax.
            // s = argmax( logp - log(-log(eps)) ) where eps ~ U(0, 1).
            // Here we can apply exp to the formula which will not affect result
            // of argmax or topk. Then we have
            // s = argmax( p / (-log(eps)) ) where eps ~ U(0, 1).
            // We can also simplify the formula above by
            // s = argmax( p / q ) where q ~ Exp(1).
            if (fanout == 1) {
              // Return argmax(p / q).
              scalar_t max_prob = 0;
              PickedType max_prob_index = -1;
              // We only care about the neighbors with non-zero probability.
              for (auto i = 0; i < num_positive_probs; ++i) {
                // Calculate (p / q) for the current neighbor.
                scalar_t current_prob =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                if (current_prob > max_prob) {
                  max_prob = current_prob;
                  max_prob_index = positive_probs_indices_ptr[i];
                }
              }
              *picked_data_ptr = max_prob_index + offset;
            } else {
              // Return topk(p / q).
              std::vector<std::pair<scalar_t, PickedType>> q(
                  num_positive_probs);
              for (auto i = 0; i < num_positive_probs; ++i) {
                q[i].first =
                    local_probs_data_ptr[positive_probs_indices_ptr[i]] /
                    RandomEngine::ThreadLocal()->Exponential(1.);
                q[i].second = positive_probs_indices_ptr[i];
              }
              if (fanout < num_positive_probs / 64) {
                // Use partial_sort.
                std::partial_sort(
                    q.begin(), q.begin() + fanout, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              } else {
                // Use nth_element.
                std::nth_element(
                    q.begin(), q.begin() + fanout - 1, q.end(), std::greater{});
                for (auto i = 0; i < fanout; ++i) {
                  picked_data_ptr[i] = q[i].second + offset;
                }
              }
            }
          } else {
            // Calculate cumulative sum of probabilities.
            std::vector<scalar_t> prefix_sum_probs(num_positive_probs);
            scalar_t sum_probs = 0;
            for (auto i = 0; i < num_positive_probs; ++i) {
              sum_probs += local_probs_data_ptr[positive_probs_indices_ptr[i]];
              prefix_sum_probs[i] = sum_probs;
            }
            // Normalize.
            if ((sum_probs > 1.00001) || (sum_probs < 0.99999)) {
              for (auto i = 0; i < num_positive_probs; ++i) {
                prefix_sum_probs[i] /= sum_probs;
              }
            }
            for (auto i = 0; i < fanout; ++i) {
              // Sample a probability mass from a uniform distribution.
              double uniform_sample =
                  RandomEngine::ThreadLocal()->Uniform(0., 1.);
              // Use a binary search to find the index.
              int sampled_index = std::lower_bound(
                                      prefix_sum_probs.begin(),
                                      prefix_sum_probs.end(), uniform_sample) -
                                  prefix_sum_probs.begin();
              picked_data_ptr[i] =
                  positive_probs_indices_ptr[sampled_index] + offset;
            }
          }
        }));
778
    return fanout;
779
780
781
  }
}

782
template <typename PickedType>
783
int64_t Pick(
784
785
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
786
    const torch::optional<torch::Tensor>& probs_or_mask,
787
    SamplerArgs<SamplerType::NEIGHBOR> args, PickedType* picked_data_ptr) {
788
  if (probs_or_mask.has_value()) {
789
    return NonUniformPick(
790
791
        offset, num_neighbors, fanout, replace, options, probs_or_mask,
        picked_data_ptr);
792
  } else {
793
    return UniformPick(
794
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
795
796
797
  }
}

798
template <SamplerType S, typename PickedType>
799
int64_t PickByEtype(
800
801
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
802
    const torch::Tensor& type_per_edge,
803
804
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args,
    PickedType* picked_data_ptr) {
805
806
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
807
  int64_t pick_offset = 0;
808
809
810
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
811
812
813
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
814
          TORCH_CHECK(
815
              etype >= 0 && etype < (int64_t)fanouts.size(),
816
              "Etype values exceed the number of fanouts.");
817
          int64_t fanout = fanouts[etype];
818
819
820
821
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
822
823
          // Do sampling for one etype.
          if (fanout != 0) {
824
            int64_t picked_count = Pick(
825
                etype_begin, etype_end - etype_begin, fanout, replace, options,
826
827
                probs_or_mask, args, picked_data_ptr + pick_offset);
            pick_offset += picked_count;
828
829
830
831
          }
          etype_begin = etype_end;
        }
      }));
832
  return pick_offset;
833
834
}

835
template <typename PickedType>
836
int64_t Pick(
837
838
839
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
840
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
841
  if (fanout == 0) return 0;
842
  if (probs_or_mask.has_value()) {
843
    if (fanout < 0) {
844
      return NonUniformPick(
845
846
847
          offset, num_neighbors, fanout, replace, options, probs_or_mask,
          picked_data_ptr);
    } else {
848
      int64_t picked_count;
849
850
851
      AT_DISPATCH_FLOATING_TYPES(
          probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
            if (replace) {
852
              picked_count = LaborPick<true, true, scalar_t>(
853
854
855
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            } else {
856
              picked_count = LaborPick<true, false, scalar_t>(
857
858
859
860
                  offset, num_neighbors, fanout, options, probs_or_mask, args,
                  picked_data_ptr);
            }
          }));
861
      return picked_count;
862
863
    }
  } else if (fanout < 0) {
864
    return UniformPick(
865
        offset, num_neighbors, fanout, replace, options, picked_data_ptr);
866
  } else if (replace) {
867
    return LaborPick<false, true, float>(
868
        offset, num_neighbors, fanout, options,
869
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
870
  } else {  // replace = false
871
    return LaborPick<false, false, float>(
872
        offset, num_neighbors, fanout, options,
873
        /* probs_or_mask= */ torch::nullopt, args, picked_data_ptr);
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
891
892
893
894
 *  - When the value is -1, all neighbors (with non-zero probability, if
 * weighted) will be sampled once regardless of replacement. It is equivalent to
 * selecting all neighbors with non-zero probability when the fanout is >= the
 * number of neighbors (and replacement is set to false).
895
896
897
898
899
900
901
902
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
903
904
 * @param picked_data_ptr The destination address where the picked neighbors
 * should be put. Enough memory space should be allocated in advance.
905
 */
906
template <
907
908
    bool NonUniform, bool Replace, typename ProbsType, typename PickedType,
    int StackSize>
909
inline int64_t LaborPick(
910
911
912
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
913
    SamplerArgs<SamplerType::LABOR> args, PickedType* picked_data_ptr) {
914
  fanout = Replace ? fanout : std::min(fanout, num_neighbors);
915
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
916
    std::iota(picked_data_ptr, picked_data_ptr + num_neighbors, offset);
917
    return num_neighbors;
918
919
  }
  // Assuming max_degree of a vertex is <= 4 billion.
920
921
922
923
924
925
926
927
928
  std::array<std::pair<float, uint32_t>, StackSize> heap;
  auto heap_data = heap.data();
  torch::Tensor heap_tensor;
  if (fanout > StackSize) {
    constexpr int factor = sizeof(heap_data[0]) / sizeof(int32_t);
    heap_tensor = torch::empty({fanout * factor}, torch::kInt32);
    heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
        heap_tensor.data_ptr<int32_t>());
  }
929
930
931
  const ProbsType* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<ProbsType>() + offset
                 : nullptr;
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
958
959
960
961
962
963
964
965
          std::array<float, StackSize> remaining;
          auto remaining_data = remaining.data();
          torch::Tensor remaining_tensor;
          if (num_neighbors > StackSize) {
            remaining_tensor = torch::empty({num_neighbors}, torch::kFloat32);
            remaining_data = remaining_tensor.data_ptr<float>();
          }
          std::fill_n(remaining_data, num_neighbors, 1.f);
966
967
968
969
970
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
971
                    args.random_seed, t, args.num_nodes, j, remaining_data[i],
972
973
974
975
976
977
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
978
979
980
                  if (++heap_end >= heap_data + fanout) {
                    std::make_heap(heap_data, heap_data + fanout);
                  }
981
982
983
984
985
986
987
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
988
                  remaining_data[i] = -1;
989
990
991
992
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
993
            const auto t = local_indices_data[i];
994
995
996
997
998
            for (int64_t j = 0; j < init_count; j++) {
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
999
            if (remaining_data[i] == -1) continue;
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
1051
1052
1053
1054
1055
1056
  for (int64_t i = 0; i < fanout; ++i) {
    const auto [rnd, j] = heap_data[i];
    if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
      picked_data_ptr[num_sampled++] = offset + j;
    }
  }
1057
  return num_sampled;
1058
1059
}

1060
1061
}  // namespace sampling
}  // namespace graphbolt