csc_sampling_graph.cc 7.68 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
11
12
#include <torch/torch.h>

#include <tuple>
#include <vector>
13

14
15
#include "./shared_memory_utils.h"

16
17
18
19
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
20
    const torch::Tensor& indptr, const torch::Tensor& indices,
21
22
23
    const torch::optional<torch::Tensor>& node_type_offset,
    const torch::optional<torch::Tensor>& type_per_edge)
    : indptr_(indptr),
24
      indices_(indices),
25
26
      node_type_offset_(node_type_offset),
      type_per_edge_(type_per_edge) {
27
28
29
30
31
32
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
33
    const torch::Tensor& indptr, const torch::Tensor& indices,
34
35
36
37
38
39
40
41
42
43
    const torch::optional<torch::Tensor>& node_type_offset,
    const torch::optional<torch::Tensor>& type_per_edge) {
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
44
45

  return c10::make_intrusive<CSCSamplingGraph>(
46
      indptr, indices, node_type_offset, type_per_edge);
47
48
}

49
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
50
51
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
52
53
54
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
55
56
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
57
58
59
60
61
62
63
64
65
66
67
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
68
69
70
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
71
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
72
73
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
74
75
76
77
78
79
80
81
82
83
84
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
85
86
}

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
117
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
118
119
120
121
122
123
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

124
125
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes) const {
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
  const int64_t num_nodes = nodes.size(0);

  std::vector<torch::Tensor> picked_neighbors_per_node(num_nodes);
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

  torch::parallel_for(0, num_nodes, 32, [&](size_t b, size_t e) {
    for (size_t i = b; i < e; ++i) {
      const auto nid = nodes[i].item<int64_t>();
      TORCH_CHECK(
          nid >= 0 && nid < NumNodes(),
          "The seed nodes' IDs should fall within the range of the graph's "
          "node IDs.");
      const auto offset = indptr_[nid].item<int64_t>();
      const auto num_neighbors = indptr_[nid + 1].item<int64_t>() - offset;

      if (num_neighbors == 0) {
        // Initialization is performed here because all tensors will be
        // concatenated in the master thread, and having an undefined tensor
        // during concatenation can result in a crash.
        picked_neighbors_per_node[i] = torch::tensor({}, indptr_.options());
        continue;
      }

      picked_neighbors_per_node[i] =
          torch::arange(offset, offset + num_neighbors);
      num_picked_neighbors_per_node[i + 1] = num_neighbors;
    }
  });  // End of the thread.

  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_node);
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);

163
  return c10::make_intrusive<SampledSubgraph>(
164
165
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt, torch::nullopt,
      torch::nullopt);
166
167
}

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
      optional_tensors[2], optional_tensors[3]);
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

198
199
}  // namespace sampling
}  // namespace graphbolt