csc_sampling_graph.cc 31.9 KB
Newer Older
1
2
/**
 *  Copyright (c) 2023 by Contributors
3
 * @file csc_sampling_graph.cc
4
5
6
 * @brief Source file of sampling graph.
 */

7
8
#include <graphbolt/csc_sampling_graph.h>
#include <graphbolt/serialize.h>
9
10
#include <torch/torch.h>

11
12
#include <cmath>
#include <limits>
13
14
#include <tuple>
#include <vector>
15

16
#include "./random.h"
17
18
#include "./shared_memory_utils.h"

19
20
21
22
namespace graphbolt {
namespace sampling {

CSCSamplingGraph::CSCSamplingGraph(
23
    const torch::Tensor& indptr, const torch::Tensor& indices,
24
    const torch::optional<torch::Tensor>& node_type_offset,
25
26
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes)
27
    : indptr_(indptr),
28
      indices_(indices),
29
      node_type_offset_(node_type_offset),
30
31
      type_per_edge_(type_per_edge),
      edge_attributes_(edge_attributes) {
32
33
34
35
36
37
  TORCH_CHECK(indptr.dim() == 1);
  TORCH_CHECK(indices.dim() == 1);
  TORCH_CHECK(indptr.device() == indices.device());
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::FromCSC(
38
    const torch::Tensor& indptr, const torch::Tensor& indices,
39
    const torch::optional<torch::Tensor>& node_type_offset,
40
41
    const torch::optional<torch::Tensor>& type_per_edge,
    const torch::optional<EdgeAttrMap>& edge_attributes) {
42
43
44
45
46
47
48
49
  if (node_type_offset.has_value()) {
    auto& offset = node_type_offset.value();
    TORCH_CHECK(offset.dim() == 1);
  }
  if (type_per_edge.has_value()) {
    TORCH_CHECK(type_per_edge.value().dim() == 1);
    TORCH_CHECK(type_per_edge.value().size(0) == indices.size(0));
  }
50
51
52
53
54
  if (edge_attributes.has_value()) {
    for (const auto& pair : edge_attributes.value()) {
      TORCH_CHECK(pair.value().size(0) == indices.size(0));
    }
  }
55
  return c10::make_intrusive<CSCSamplingGraph>(
56
      indptr, indices, node_type_offset, type_per_edge, edge_attributes);
57
58
}

59
void CSCSamplingGraph::Load(torch::serialize::InputArchive& archive) {
60
61
  const int64_t magic_num =
      read_from_archive(archive, "CSCSamplingGraph/magic_num").toInt();
62
63
64
  TORCH_CHECK(
      magic_num == kCSCSamplingGraphSerializeMagic,
      "Magic numbers mismatch when loading CSCSamplingGraph.");
65
66
  indptr_ = read_from_archive(archive, "CSCSamplingGraph/indptr").toTensor();
  indices_ = read_from_archive(archive, "CSCSamplingGraph/indices").toTensor();
67
68
69
70
71
72
73
74
75
76
77
  if (read_from_archive(archive, "CSCSamplingGraph/has_node_type_offset")
          .toBool()) {
    node_type_offset_ =
        read_from_archive(archive, "CSCSamplingGraph/node_type_offset")
            .toTensor();
  }
  if (read_from_archive(archive, "CSCSamplingGraph/has_type_per_edge")
          .toBool()) {
    type_per_edge_ =
        read_from_archive(archive, "CSCSamplingGraph/type_per_edge").toTensor();
  }
78
79
80
}

void CSCSamplingGraph::Save(torch::serialize::OutputArchive& archive) const {
81
  archive.write("CSCSamplingGraph/magic_num", kCSCSamplingGraphSerializeMagic);
82
83
  archive.write("CSCSamplingGraph/indptr", indptr_);
  archive.write("CSCSamplingGraph/indices", indices_);
84
85
86
87
88
89
90
91
92
93
94
  archive.write(
      "CSCSamplingGraph/has_node_type_offset", node_type_offset_.has_value());
  if (node_type_offset_) {
    archive.write(
        "CSCSamplingGraph/node_type_offset", node_type_offset_.value());
  }
  archive.write(
      "CSCSamplingGraph/has_type_per_edge", type_per_edge_.has_value());
  if (type_per_edge_) {
    archive.write("CSCSamplingGraph/type_per_edge", type_per_edge_.value());
  }
95
96
}

97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::InSubgraph(
    const torch::Tensor& nodes) const {
  using namespace torch::indexing;
  const int32_t kDefaultGrainSize = 100;
  torch::Tensor indptr = torch::zeros_like(indptr_);
  const size_t num_seeds = nodes.size(0);
  std::vector<torch::Tensor> indices_arr(num_seeds);
  std::vector<torch::Tensor> edge_ids_arr(num_seeds);
  std::vector<torch::Tensor> type_per_edge_arr(num_seeds);
  torch::parallel_for(
      0, num_seeds, kDefaultGrainSize, [&](size_t start, size_t end) {
        for (size_t i = start; i < end; ++i) {
          const int64_t node_id = nodes[i].item<int64_t>();
          const int64_t start_idx = indptr_[node_id].item<int64_t>();
          const int64_t end_idx = indptr_[node_id + 1].item<int64_t>();
          indptr[node_id + 1] = end_idx - start_idx;
          indices_arr[i] = indices_.slice(0, start_idx, end_idx);
          edge_ids_arr[i] = torch::arange(start_idx, end_idx);
          if (type_per_edge_) {
            type_per_edge_arr[i] =
                type_per_edge_.value().slice(0, start_idx, end_idx);
          }
        }
      });

  const auto& nonzero_idx = torch::nonzero(indptr).reshape(-1);
  torch::Tensor compact_indptr =
      torch::zeros({nonzero_idx.size(0) + 1}, indptr_.dtype());
  compact_indptr.index_put_({Slice(1, None)}, indptr.index({nonzero_idx}));
  return c10::make_intrusive<SampledSubgraph>(
127
      compact_indptr.cumsum(0), torch::cat(indices_arr), nonzero_idx - 1,
128
129
130
131
132
133
      torch::arange(0, NumNodes()), torch::cat(edge_ids_arr),
      type_per_edge_
          ? torch::optional<torch::Tensor>{torch::cat(type_per_edge_arr)}
          : torch::nullopt);
}

134
135
template <SamplerType S>
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighborsImpl(
136
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
137
    bool replace, bool return_eids,
138
139
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<S> args) const {
140
  const int64_t num_nodes = nodes.size(0);
141
142
143
  // If true, perform sampling for each edge type of each node, otherwise just
  // sample once for each node with no regard of edge types.
  bool consider_etype = (fanouts.size() > 1);
144
145
  const int64_t num_threads = torch::get_num_threads();
  std::vector<torch::Tensor> picked_neighbors_per_thread(num_threads);
146
147
148
  torch::Tensor num_picked_neighbors_per_node =
      torch::zeros({num_nodes + 1}, indptr_.options());

149
150
151
  // Calculate GrainSize for parallel_for.
  // Set the default grain size to 64.
  const int64_t grain_size = 64;
152
153
  AT_DISPATCH_INTEGRAL_TYPES(
      indptr_.scalar_type(), "parallel_for", ([&] {
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        torch::parallel_for(
            0, num_nodes, grain_size, [&](scalar_t begin, scalar_t end) {
              const auto indptr_options = indptr_.options();
              const scalar_t* indptr_data = indptr_.data_ptr<scalar_t>();
              // Get current thread id.
              auto thread_id = torch::get_thread_num();
              int64_t local_grain_size = end - begin;
              std::vector<torch::Tensor> picked_neighbors_cur_thread(
                  local_grain_size);

              for (scalar_t i = begin; i < end; ++i) {
                const auto nid = nodes[i].item<int64_t>();
                TORCH_CHECK(
                    nid >= 0 && nid < NumNodes(),
                    "The seed nodes' IDs should fall within the range of the "
                    "graph's node IDs.");
                const auto offset = indptr_data[nid];
                const auto num_neighbors = indptr_data[nid + 1] - offset;

                if (num_neighbors == 0) {
                  // To avoid crashing during concatenation in the master
                  // thread, initializing with empty tensors.
                  picked_neighbors_cur_thread[i - begin] =
                      torch::tensor({}, indptr_options);
                  continue;
                }

                if (consider_etype) {
                  picked_neighbors_cur_thread[i - begin] = PickByEtype(
                      offset, num_neighbors, fanouts, replace, indptr_options,
                      type_per_edge_.value(), probs_or_mask, args);
                } else {
                  picked_neighbors_cur_thread[i - begin] = Pick(
                      offset, num_neighbors, fanouts[0], replace,
                      indptr_options, probs_or_mask, args);
                }
                num_picked_neighbors_per_node[i + 1] =
                    picked_neighbors_cur_thread[i - begin].size(0);
              }
              picked_neighbors_per_thread[thread_id] =
                  torch::cat(picked_neighbors_cur_thread);
            });  // End of parallel_for.
196
      }));
197
198
199
  torch::Tensor subgraph_indptr =
      torch::cumsum(num_picked_neighbors_per_node, 0);

200
  torch::Tensor picked_eids = torch::cat(picked_neighbors_per_thread);
201
202
  torch::Tensor subgraph_indices =
      torch::index_select(indices_, 0, picked_eids);
203
  torch::optional<torch::Tensor> subgraph_type_per_edge = torch::nullopt;
204
  if (type_per_edge_.has_value()) {
205
206
    subgraph_type_per_edge =
        torch::index_select(type_per_edge_.value(), 0, picked_eids);
207
  }
208
209
  torch::optional<torch::Tensor> subgraph_reverse_edge_ids = torch::nullopt;
  if (return_eids) subgraph_reverse_edge_ids = std::move(picked_eids);
210
  return c10::make_intrusive<SampledSubgraph>(
211
      subgraph_indptr, subgraph_indices, nodes, torch::nullopt,
212
      subgraph_reverse_edge_ids, subgraph_type_per_edge);
213
214
}

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
c10::intrusive_ptr<SampledSubgraph> CSCSamplingGraph::SampleNeighbors(
    const torch::Tensor& nodes, const std::vector<int64_t>& fanouts,
    bool replace, bool layer, bool return_eids,
    torch::optional<std::string> probs_name) const {
  torch::optional<torch::Tensor> probs_or_mask = torch::nullopt;
  if (probs_name.has_value() && !probs_name.value().empty()) {
    probs_or_mask = edge_attributes_.value().at(probs_name.value());
    // Note probs will be passed as input for 'torch.multinomial' in deeper
    // stack, which doesn't support 'torch.half' and 'torch.bool' data types. To
    // avoid crashes, convert 'probs_or_mask' to 'float32' data type.
    if (probs_or_mask.value().dtype() == torch::kBool ||
        probs_or_mask.value().dtype() == torch::kFloat16) {
      probs_or_mask = probs_or_mask.value().to(torch::kFloat32);
    }
  }
  if (layer) {
    const int64_t random_seed = RandomEngine::ThreadLocal()->RandInt(
        static_cast<int64_t>(0), std::numeric_limits<int64_t>::max());
    SamplerArgs<SamplerType::LABOR> args{indices_, random_seed, NumNodes()};
    return SampleNeighborsImpl(
        nodes, fanouts, replace, return_eids, probs_or_mask, args);
  } else {
    SamplerArgs<SamplerType::NEIGHBOR> args;
    return SampleNeighborsImpl(
        nodes, fanouts, replace, return_eids, probs_or_mask, args);
  }
}

243
244
245
246
247
248
249
250
251
252
253
254
std::tuple<torch::Tensor, torch::Tensor>
CSCSamplingGraph::SampleNegativeEdgesUniform(
    const std::tuple<torch::Tensor, torch::Tensor>& node_pairs,
    int64_t negative_ratio, int64_t max_node_id) const {
  torch::Tensor pos_src;
  std::tie(pos_src, std::ignore) = node_pairs;
  auto neg_len = pos_src.size(0) * negative_ratio;
  auto neg_src = pos_src.repeat(negative_ratio);
  auto neg_dst = torch::randint(0, max_node_id, {neg_len}, pos_src.options());
  return std::make_tuple(neg_src, neg_dst);
}

255
256
257
258
259
260
261
262
c10::intrusive_ptr<CSCSamplingGraph>
CSCSamplingGraph::BuildGraphFromSharedMemoryTensors(
    std::tuple<
        SharedMemoryPtr, SharedMemoryPtr,
        std::vector<torch::optional<torch::Tensor>>>&& shared_memory_tensors) {
  auto& optional_tensors = std::get<2>(shared_memory_tensors);
  auto graph = c10::make_intrusive<CSCSamplingGraph>(
      optional_tensors[0].value(), optional_tensors[1].value(),
263
      optional_tensors[2], optional_tensors[3], torch::nullopt);
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
  graph->tensor_meta_shm_ = std::move(std::get<0>(shared_memory_tensors));
  graph->tensor_data_shm_ = std::move(std::get<1>(shared_memory_tensors));
  return graph;
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::CopyToSharedMemory(
    const std::string& shared_memory_name) {
  auto optional_tensors = std::vector<torch::optional<torch::Tensor>>{
      indptr_, indices_, node_type_offset_, type_per_edge_};
  auto shared_memory_tensors = CopyTensorsToSharedMemory(
      shared_memory_name, optional_tensors, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

c10::intrusive_ptr<CSCSamplingGraph> CSCSamplingGraph::LoadFromSharedMemory(
    const std::string& shared_memory_name) {
  auto shared_memory_tensors = LoadTensorsFromSharedMemory(
      shared_memory_name, SERIALIZED_METAINFO_SIZE_MAX);
  return BuildGraphFromSharedMemoryTensors(std::move(shared_memory_tensors));
}

285
286
287
288
289
290
291
292
293
294
295
296
297
/**
 * @brief Perform uniform sampling of elements and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
298
 * @param replace Boolean indicating whether the sample is performed with or
299
300
301
302
303
304
305
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor UniformPick(
306
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
307
308
    const torch::TensorOptions& options) {
  torch::Tensor picked_neighbors;
309
  if ((fanout == -1) || (num_neighbors <= fanout && !replace)) {
310
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
311
312
313
  } else if (replace) {
    picked_neighbors =
        torch::randint(offset, offset + num_neighbors, {fanout}, options);
314
  } else {
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    picked_neighbors = torch::empty({fanout}, options);
    AT_DISPATCH_INTEGRAL_TYPES(
        picked_neighbors.scalar_type(), "UniformPick", ([&] {
          scalar_t* picked_neighbors_data =
              picked_neighbors.data_ptr<scalar_t>();
          // We use different sampling strategies for different sampling case.
          if (fanout >= num_neighbors / 10) {
            // [Algorithm]
            // This algorithm is conceptually related to the Fisher-Yates
            // shuffle.
            //
            // [Complexity Analysis]
            // This algorithm's memory complexity is O(num_neighbors), but
            // it generates fewer random numbers (O(fanout)).
            //
            // (Compare) Reservoir algorithm is one of the most classical
            // sampling algorithms. Both the reservoir algorithm and our
            // algorithm offer distinct advantages, we need to compare to
            // illustrate our trade-offs.
            // The reservoir algorithm is memory-efficient (O(fanout)) but
            // creates many random numbers (O(num_neighbors)), which is
            // costly.
            //
            // [Practical Consideration]
            // Use this algorithm when `fanout >= num_neighbors / 10` to
            // reduce computation.
            // In this scenarios above, memory complexity is not a concern due
            // to the small size of both `fanout` and `num_neighbors`. And it
            // is efficient to allocate a small amount of memory. So the
            // algorithm performence is great in this case.
            std::vector<scalar_t> seq(num_neighbors);
            // Assign the seq with [offset, offset + num_neighbors].
            std::iota(seq.begin(), seq.end(), offset);
            for (int64_t i = 0; i < fanout; ++i) {
              auto j = RandomEngine::ThreadLocal()->RandInt(i, num_neighbors);
              std::swap(seq[i], seq[j]);
            }
            // Save the randomly sampled fanout elements to the output tensor.
            std::copy(seq.begin(), seq.begin() + fanout, picked_neighbors_data);
          } else if (fanout < 64) {
            // [Algorithm]
            // Use linear search to verify uniqueness.
            //
            // [Complexity Analysis]
            // Since the set of numbers is small (up to 64), so it is more
            // cost-effective for the CPU to use this algorithm.
            auto begin = picked_neighbors_data;
            auto end = picked_neighbors_data + fanout;

            while (begin != end) {
              // Put the new random number in the last position.
              *begin = RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors);
              // Check if a new value doesn't exist in current
              // range(picked_neighbors_data, begin). Otherwise get a new
              // value until we haven't unique range of elements.
              auto it = std::find(picked_neighbors_data, begin, *begin);
              if (it == begin) ++begin;
            }
          } else {
            // [Algorithm]
            // Use hash-set to verify uniqueness. In the best scenario, the
            // time complexity is O(fanout), assuming no conflicts occur.
            //
            // [Complexity Analysis]
            // Let K = (fanout / num_neighbors), the expected number of extra
            // sampling steps is roughly K^2 / (1-K) * num_neighbors, which
            // means in the worst case scenario, the time complexity is
            // O(num_neighbors^2).
            //
            // [Practical Consideration]
            // In practice, we set the threshold K to 1/10. This trade-off is
            // due to the slower performance of std::unordered_set, which
            // would otherwise increase the sampling cost. By doing so, we
            // achieve a balance between theoretical efficiency and practical
            // performance.
            std::unordered_set<scalar_t> picked_set;
            while (static_cast<int64_t>(picked_set.size()) < fanout) {
              picked_set.insert(RandomEngine::ThreadLocal()->RandInt(
                  offset, offset + num_neighbors));
            }
            std::copy(
                picked_set.begin(), picked_set.end(), picked_neighbors_data);
          }
        }));
400
401
402
403
  }
  return picked_neighbors;
}

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
/**
 * @brief Perform non-uniform sampling of elements based on probabilities and
 * return the sampled indices.
 *
 * If 'probs_or_mask' is provided, it indicates that the sampling is
 * non-uniform. In such cases:
 * - When the number of neighbors with non-zero probability is less than or
 * equal to fanout, all neighbors with non-zero probability will be selected.
 * - When the number of neighbors with non-zero probability exceeds fanout, the
 * sampling process will select 'fanout' elements based on their respective
 * probabilities. Higher probabilities will increase the chances of being chosen
 * during the sampling process.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
427
 * @param replace Boolean indicating whether the sample is performed with or
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
 * without replacement. If True, a value can be selected multiple times.
 * Otherwise, each value can be selected only once.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 *
 * @return A tensor containing the picked neighbors.
 */
inline torch::Tensor NonUniformPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask) {
  torch::Tensor picked_neighbors;
  auto local_probs =
      probs_or_mask.value().slice(0, offset, offset + num_neighbors);
  auto positive_probs_indices = local_probs.nonzero().squeeze(1);
  auto num_positive_probs = positive_probs_indices.size(0);
  if (num_positive_probs == 0) return torch::tensor({}, options);
  if ((fanout == -1) || (num_positive_probs <= fanout && !replace)) {
    picked_neighbors = torch::arange(offset, offset + num_neighbors, options);
    picked_neighbors =
        torch::index_select(picked_neighbors, 0, positive_probs_indices);
  } else {
    if (!replace) fanout = std::min(fanout, num_positive_probs);
    picked_neighbors =
        torch::multinomial(local_probs, fanout, replace) + offset;
  }
  return picked_neighbors;
}

460
461
template <>
torch::Tensor Pick<SamplerType::NEIGHBOR>(
462
463
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
464
465
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::NEIGHBOR> args) {
466
467
468
469
470
471
472
473
  if (probs_or_mask.has_value()) {
    return NonUniformPick(
        offset, num_neighbors, fanout, replace, options, probs_or_mask);
  } else {
    return UniformPick(offset, num_neighbors, fanout, replace, options);
  }
}

474
template <SamplerType S>
475
476
477
torch::Tensor PickByEtype(
    int64_t offset, int64_t num_neighbors, const std::vector<int64_t>& fanouts,
    bool replace, const torch::TensorOptions& options,
478
    const torch::Tensor& type_per_edge,
479
    const torch::optional<torch::Tensor>& probs_or_mask, SamplerArgs<S> args) {
480
481
482
483
  std::vector<torch::Tensor> picked_neighbors(
      fanouts.size(), torch::tensor({}, options));
  int64_t etype_begin = offset;
  int64_t etype_end = offset;
484
485
486
  AT_DISPATCH_INTEGRAL_TYPES(
      type_per_edge.scalar_type(), "PickByEtype", ([&] {
        const scalar_t* type_per_edge_data = type_per_edge.data_ptr<scalar_t>();
487
488
489
        const auto end = offset + num_neighbors;
        while (etype_begin < end) {
          scalar_t etype = type_per_edge_data[etype_begin];
490
          TORCH_CHECK(
491
              etype >= 0 && etype < (int64_t)fanouts.size(),
492
              "Etype values exceed the number of fanouts.");
493
          int64_t fanout = fanouts[etype];
494
495
496
497
          auto etype_end_it = std::upper_bound(
              type_per_edge_data + etype_begin, type_per_edge_data + end,
              etype);
          etype_end = etype_end_it - type_per_edge_data;
498
499
          // Do sampling for one etype.
          if (fanout != 0) {
500
            picked_neighbors[etype] = Pick<S>(
501
                etype_begin, etype_end - etype_begin, fanout, replace, options,
502
                probs_or_mask, args);
503
504
505
506
          }
          etype_begin = etype_end;
        }
      }));
507
508
509
510

  return torch::cat(picked_neighbors, 0);
}

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
template <>
torch::Tensor Pick<SamplerType::LABOR>(
    int64_t offset, int64_t num_neighbors, int64_t fanout, bool replace,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  if (fanout == 0) return torch::tensor({}, options);
  if (probs_or_mask.has_value()) {
    torch::Tensor picked_neighbors;
    AT_DISPATCH_FLOATING_TYPES(
        probs_or_mask.value().scalar_type(), "LaborPickFloatType", ([&] {
          if (replace) {
            picked_neighbors = LaborPick<true, true, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          } else {
            picked_neighbors = LaborPick<true, false, scalar_t>(
                offset, num_neighbors, fanout, options, probs_or_mask, args);
          }
        }));
    return picked_neighbors;
  } else if (replace) {
    return LaborPick<false, true>(
533
534
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
535
536
  } else {  // replace = false
    return LaborPick<false, false>(
537
538
        offset, num_neighbors, fanout, options,
        /* probs_or_mask= */ torch::nullopt, args);
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
  }
}

template <typename T, typename U>
inline void safe_divide(T& a, U b) {
  a = b > 0 ? (T)(a / b) : std::numeric_limits<T>::infinity();
}

/**
 * @brief Perform uniform-nonuniform sampling of elements depending on the
 * template parameter NonUniform and return the sampled indices.
 *
 * @param offset The starting edge ID for the connected neighbors of the sampled
 * node.
 * @param num_neighbors The number of neighbors to pick.
 * @param fanout The number of edges to be sampled for each node. It should be
 * >= 0 or -1.
 *  - When the value is -1, all neighbors will be chosen for sampling. It is
 * equivalent to selecting all neighbors with non-zero probability when the
 * fanout is >= the number of neighbors (and replacement is set to false).
 *  - When the value is a non-negative integer, it serves as a minimum
 * threshold for selecting neighbors.
 * @param options Tensor options specifying the desired data type of the result.
 * @param probs_or_mask Optional tensor containing the (unnormalized)
 * probabilities associated with each neighboring edge of a node in the original
 * graph. It must be a 1D floating-point tensor with the number of elements
 * equal to the number of edges in the graph.
 * @param args Contains labor specific arguments.
 *
 * @return A tensor containing the picked neighbors.
 */
template <bool NonUniform, bool Replace, typename T>
inline torch::Tensor LaborPick(
    int64_t offset, int64_t num_neighbors, int64_t fanout,
    const torch::TensorOptions& options,
    const torch::optional<torch::Tensor>& probs_or_mask,
    SamplerArgs<SamplerType::LABOR> args) {
  fanout = fanout < 0 ? num_neighbors : std::min(fanout, num_neighbors);
  if (!NonUniform && !Replace && fanout >= num_neighbors) {
    return torch::arange(offset, offset + num_neighbors, options);
  }
  torch::Tensor heap_tensor = torch::empty({fanout * 2}, torch::kInt32);
  // Assuming max_degree of a vertex is <= 4 billion.
  auto heap_data = reinterpret_cast<std::pair<float, uint32_t>*>(
      heap_tensor.data_ptr<int32_t>());
  const T* local_probs_data =
      NonUniform ? probs_or_mask.value().data_ptr<T>() + offset : nullptr;
  AT_DISPATCH_INTEGRAL_TYPES(
      args.indices.scalar_type(), "LaborPickMain", ([&] {
        const scalar_t* local_indices_data =
            args.indices.data_ptr<scalar_t>() + offset;
        if constexpr (Replace) {
          // [Algorithm] @mfbalin
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          // Unlike sampling without replacement below, the same item can be
          // included fanout times in our sample. Thus, we sort and pick the
          // smallest fanout random numbers out of num_neighbors * fanout of
          // them. Each item has fanout many random numbers in the race and the
          // smallest fanout of them get picked. Instead of generating
          // fanout * num_neighbors random numbers and increase the complexity,
          // I devised an algorithm to generate the fanout numbers for an item
          // in a sorted manner on demand, meaning we continue generating random
          // numbers for an item only if it has been sampled that many times
          // already.
          // https://gist.github.com/mfbalin/096dcad5e3b1f6a59ff7ff2f9f541618
          //
          // [Complexity Analysis]
          // Will modify the heap at most linear in O(num_neighbors + fanout)
          // and each modification takes O(log(fanout)). So the total complexity
          // is O((fanout + num_neighbors) log(fanout)). It is possible to
          // decrease the logarithmic factor down to
          // O(log(min(fanout, num_neighbors))).
          torch::Tensor remaining =
              torch::ones({num_neighbors}, torch::kFloat32);
          float* rem_data = remaining.data_ptr<float>();
          auto heap_end = heap_data;
          const auto init_count = (num_neighbors + fanout - 1) / num_neighbors;
          auto sample_neighbor_i_with_index_t_jth_time =
              [&](scalar_t t, int64_t j, uint32_t i) {
                auto rnd = labor::jth_sorted_uniform_random(
                    args.random_seed, t, args.num_nodes, j, rem_data[i],
                    fanout - j);  // r_t
                if constexpr (NonUniform) {
                  safe_divide(rnd, local_probs_data[i]);
                }  // r_t / \pi_t
                if (heap_end < heap_data + fanout) {
                  heap_end[0] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, ++heap_end);
                  return false;
                } else if (rnd < heap_data[0].first) {
                  std::pop_heap(heap_data, heap_data + fanout);
                  heap_data[fanout - 1] = std::make_pair(rnd, i);
                  std::push_heap(heap_data, heap_data + fanout);
                  return false;
                } else {
                  rem_data[i] = -1;
                  return true;
                }
              };
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            for (int64_t j = 0; j < init_count; j++) {
              const auto t = local_indices_data[i];
              sample_neighbor_i_with_index_t_jth_time(t, j, i);
            }
          }
          for (uint32_t i = 0; i < num_neighbors; ++i) {
            if (rem_data[i] == -1) continue;
            const auto t = local_indices_data[i];
            for (int64_t j = init_count; j < fanout; ++j) {
              if (sample_neighbor_i_with_index_t_jth_time(t, j, i)) break;
            }
          }
        } else {
          // [Algorithm]
          // Use a max-heap to get rid of the big random numbers and filter the
          // smallest fanout of them. Implements arXiv:2210.13339 Section A.3.
          //
          // [Complexity Analysis]
          // the first for loop and std::make_heap runs in time O(fanouts).
          // The next for loop compares each random number to the current
          // minimum fanout numbers. For any given i, the probability that the
          // current random number will replace any number in the heap is fanout
          // / i. Summing from i=fanout to num_neighbors, we get f * (H_n -
          // H_f), where n is num_neighbors and f is fanout, H_f is \sum_j=1^f
          // 1/j. In the end H_n - H_f = O(log n/f), there are n - f iterations,
          // each heap operation takes time log f, so the total complexity is
          // O(f + (n - f)
          // + f log(n/f) log f) = O(n + f log(f) log(n/f)). If f << n (f is a
          // constant in almost all cases), then the average complexity is
          // O(num_neighbors).
          for (uint32_t i = 0; i < fanout; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            heap_data[i] = std::make_pair(rnd, i);
          }
          if (!NonUniform || fanout < num_neighbors) {
            std::make_heap(heap_data, heap_data + fanout);
          }
          for (uint32_t i = fanout; i < num_neighbors; ++i) {
            const auto t = local_indices_data[i];
            auto rnd =
                labor::uniform_random<float>(args.random_seed, t);  // r_t
            if constexpr (NonUniform) {
              safe_divide(rnd, local_probs_data[i]);
            }  // r_t / \pi_t
            if (rnd < heap_data[0].first) {
              std::pop_heap(heap_data, heap_data + fanout);
              heap_data[fanout - 1] = std::make_pair(rnd, i);
              std::push_heap(heap_data, heap_data + fanout);
            }
          }
        }
      }));
  int64_t num_sampled = 0;
  torch::Tensor picked_neighbors = torch::empty({fanout}, options);
  AT_DISPATCH_INTEGRAL_TYPES(
      picked_neighbors.scalar_type(), "LaborPickOutput", ([&] {
        scalar_t* picked_neighbors_data = picked_neighbors.data_ptr<scalar_t>();
        for (int64_t i = 0; i < fanout; ++i) {
          const auto [rnd, j] = heap_data[i];
          if (!NonUniform || rnd < std::numeric_limits<float>::infinity()) {
            picked_neighbors_data[num_sampled++] = offset + j;
          }
        }
      }));
  TORCH_CHECK(
      !Replace || num_sampled == fanout || num_sampled == 0,
      "Sampling with replacement should sample exactly fanout neighbors or 0!");
  return picked_neighbors.narrow(0, 0, num_sampled);
}

715
716
}  // namespace sampling
}  // namespace graphbolt