test_heterograph.py 96.9 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
12
13
import test_utils
from test_utils import parametrize_dtype, get_cases
from scipy.sparse import rand
14

15
def create_test_heterograph(idtype):
16
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
17
18
19
20
21
22
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
23

24
25
26
27
28
29
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
30
31
    assert g.idtype == idtype
    assert g.device == F.ctx()
32
33
    return g

34
def create_test_heterograph1(idtype):
Minjie Wang's avatar
Minjie Wang committed
35
    edges = []
36
37
38
39
40
    edges.extend([(0, 1), (1, 2)])  # follows
    edges.extend([(0, 3), (1, 3), (2, 4), (1, 4)])  # plays
    edges.extend([(0, 4), (2, 3)])  # wishes
    edges.extend([(5, 3), (6, 4)])  # develops
    edges = tuple(zip(*edges))
Minjie Wang's avatar
Minjie Wang committed
41
42
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
43
    g0 = dgl.graph(edges, idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
44
45
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
46
47
    return dgl.to_heterogeneous(g0, ['user', 'game', 'developer'],
                                ['follows', 'plays', 'wishes', 'develops'])
Minjie Wang's avatar
Minjie Wang committed
48

49
def create_test_heterograph2(idtype):
50
    g = dgl.heterograph({
51
52
53
54
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
55
56
57
        }, idtype=idtype, device=F.ctx())
    assert g.idtype == idtype
    assert g.device == F.ctx()
58
59
    return g

60
61
62
63
64
65
66
def create_test_heterograph3(idtype):
    g = dgl.heterograph({
        ('user', 'plays', 'game'): (F.tensor([0, 1, 1, 2], dtype=idtype),
                                    F.tensor([0, 0, 1, 1], dtype=idtype)),
        ('developer', 'develops', 'game'): (F.tensor([0, 1], dtype=idtype),
                                            F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
67
68
69
70

    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    g.nodes['developer'].data['h'] = F.copy_to(F.tensor([3, 3], dtype=idtype), ctx=F.ctx())
71
72
73
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 1, 1, 1], dtype=idtype), ctx=F.ctx())
    return g

74
def create_test_heterograph4(idtype):
75
76
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([0, 1, 1, 2, 2, 2], dtype=idtype),
77
                                      F.tensor([0, 0, 1, 1, 2, 2], dtype=idtype)),
78
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
79
                                    F.tensor([0, 1], dtype=idtype))},
80
        idtype=idtype, device=F.ctx())
81
82
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
83
84
85
86
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4, 5, 6], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    return g

87
def create_test_heterograph5(idtype):
88
89
    g = dgl.heterograph({
        ('user', 'follows', 'user'): (F.tensor([1, 2], dtype=idtype),
90
                                      F.tensor([0, 1], dtype=idtype)),
91
92
93
        ('user', 'plays', 'game'): (F.tensor([0, 1], dtype=idtype),
                                    F.tensor([0, 1], dtype=idtype))},
        idtype=idtype, device=F.ctx())
94
95
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
96
97
    g.edges['follows'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
98
99
    return g

Minjie Wang's avatar
Minjie Wang committed
100
101
102
def get_redfn(name):
    return getattr(F, name)

103
@parametrize_dtype
104
105
106
107
108
def test_create(idtype):
    device = F.ctx()
    g0 = create_test_heterograph(idtype)
    g1 = create_test_heterograph1(idtype)
    g2 = create_test_heterograph2(idtype)
109
110
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    # Create a bipartite graph from a SciPy matrix
    src_ids = np.array([2, 3, 4])
    dst_ids = np.array([1, 2, 3])
    eweight = np.array([0.2, 0.3, 0.5])
    sp_mat = ssp.coo_matrix((eweight, (src_ids, dst_ids)))
    g = dgl.bipartite_from_scipy(sp_mat, utype='user', etype='plays',
                                 vtype='game', idtype=idtype, device=device)
    assert g.idtype == idtype
    assert g.device == device
    assert g.num_src_nodes() == 5
    assert g.num_dst_nodes() == 4
    assert g.num_edges() == 3
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([2, 3, 4], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2, 3], dtype=idtype))
    g = dgl.bipartite_from_scipy(sp_mat, utype='_U', etype='_E', vtype='_V',
                                 eweight_name='w', idtype=idtype, device=device)
    assert F.allclose(g.edata['w'], F.tensor(eweight))

    # Create a bipartite graph from a NetworkX graph
    nx_g = nx.DiGraph()
    nx_g.add_nodes_from([1, 3], bipartite=0, feat1=np.zeros((2)), feat2=np.ones((2)))
    nx_g.add_nodes_from([2, 4, 5], bipartite=1, feat3=np.zeros((3)))
    nx_g.add_edge(1, 4, weight=np.ones((1)), eid=np.array([1]))
    nx_g.add_edge(3, 5, weight=np.ones((1)), eid=np.array([0]))
    g = dgl.bipartite_from_networkx(nx_g, utype='user', etype='plays',
                                    vtype='game', idtype=idtype, device=device)
139
140
    assert g.idtype == idtype
    assert g.device == device
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    assert g.num_src_nodes() == 2
    assert g.num_dst_nodes() == 3
    assert g.num_edges() == 2
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([0, 1], dtype=idtype))
    assert F.allclose(dst, F.tensor([1, 2], dtype=idtype))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    u_attrs=['feat1', 'feat2'],
                                    e_attrs = ['weight'], v_attrs = ['feat3'])
    assert F.allclose(g.srcdata['feat1'], F.tensor(np.zeros((2, 2))))
    assert F.allclose(g.srcdata['feat2'], F.tensor(np.ones((2, 2))))
    assert F.allclose(g.dstdata['feat3'], F.tensor(np.zeros((3, 3))))
    assert F.allclose(g.edata['weight'], F.tensor(np.ones((2, 1))))
    g = dgl.bipartite_from_networkx(nx_g, utype='_U', etype='_E', vtype='V',
                                    edge_id_attr_name='eid', idtype=idtype, device=device)
    src, dst = g.edges()
    assert F.allclose(src, F.tensor([1, 0], dtype=idtype))
    assert F.allclose(dst, F.tensor([2, 1], dtype=idtype))
Minjie Wang's avatar
Minjie Wang committed
159
160
161

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
162
163
164
    g = dgl.from_scipy(spmat, idtype=idtype, device=device)
    assert g.num_nodes() == 4
    assert g.num_edges() == 3
165
166
    assert g.idtype == idtype
    assert g.device == device
Minjie Wang's avatar
Minjie Wang committed
167

168
169
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
170
171
172
        ('l0', 'e0', 'l1'): ([0, 0], [1, 2]),
        ('l0', 'e1', 'l2'): ([2], [2]),
        ('l2', 'e2', 'l2'): ([1, 3], [1, 3])
173
        }, idtype=idtype, device=device)
174
175
176
    assert g.num_nodes('l0') == 3
    assert g.num_nodes('l1') == 3
    assert g.num_nodes('l2') == 4
177
178
    assert g.idtype == idtype
    assert g.device == device
179

180
181
    # test if validate flag works
    # homo graph
182
    with pytest.raises(DGLError):
183
184
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
185
            num_nodes=2,
186
            idtype=idtype, device=device
187
188
189
        )
    # bipartite graph
    def _test_validate_bipartite(card):
190
        with pytest.raises(DGLError):
191
192
193
            g = dgl.heterograph({
                ('_U', '_E', '_V'): ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3])
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=device)
194
195
196
197

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

198
199
200
201
202
203
204
205
206
207
    # test from_scipy
    num_nodes = 10
    density = 0.25
    for fmt in ['csr', 'coo', 'csc']:
        adj = rand(num_nodes, num_nodes, density=density, format=fmt)
        g = dgl.from_scipy(adj, eweight_name='w', idtype=idtype)
        assert g.idtype == idtype
        assert g.device == F.cpu()
        assert F.array_equal(g.edata['w'], F.copy_to(F.tensor(adj.data), F.cpu()))

208
@parametrize_dtype
209
210
def test_query(idtype):
    g = create_test_heterograph(idtype)
211
212

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
213
    canonical_etypes = [
214
215
216
217
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
218
    etypes = ['follows', 'plays', 'wishes', 'develops']
219
220

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
221
222
223
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
224
225

    # metagraph
226
    mg = g.metagraph()
Minjie Wang's avatar
Minjie Wang committed
227
    assert set(g.ntypes) == set(mg.nodes)
228
229
230
231
232
233
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
234
235
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
236

237
238
    def _test(g):
        # number of nodes
239
        assert [g.num_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
240

241
        # number of edges
242
        assert [g.num_edges(etype) for etype in etypes] == [2, 4, 2, 2]
243

244
245
246
247
248
249
250
251
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
252

253
        assert not g.is_multigraph
Minjie Wang's avatar
Minjie Wang committed
254
255
256
257

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
258
                assert g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
259
260
261
262
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
263
                assert not g.has_edges_between(src, dst, etype)
Minjie Wang's avatar
Minjie Wang committed
264
265
266
267
268
269
270
271
272
273
274
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
275
            assert g.in_degrees(0, etype) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
276
277
278
279
280
281
282

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
283
            assert g.out_degrees(0, etype) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
284
285
286

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
287
288
289
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
290
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
291
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
292
293
294
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
295

Minjie Wang's avatar
Minjie Wang committed
296
            # find_edges
297
298
            for eid in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(eid, etype)
299
300
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
301
302
303

            # all_edges.
            for order in ['eid']:
304
                u, v, e = g.edges('all', order, etype)
Minjie Wang's avatar
Minjie Wang committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
333
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
334
    _test(g)
335
    g = create_test_heterograph1(idtype)
336
    _test(g)
337
338
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
339
        g = create_test_heterograph2(idtype)
340
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
356
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
357
    _test(g)
358
    g = create_test_heterograph1(idtype)
359
    _test(g)
360
361
    if F._default_context_str != 'gpu':
        # XXX: CUDA COO operators have not been live yet.
362
        g = create_test_heterograph2(idtype)
363
        _test(g)
Minjie Wang's avatar
Minjie Wang committed
364
365
366
367

    # test repr
    print(g)

368
@unittest.skipIf(F._default_context_str == 'gpu', reason="GPU does not have COO impl.")
369
370
371
372
373
def test_hypersparse():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
374
375
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
376
        {'user': N1, 'game': N1},
377
        device=F.ctx())
378
379
380
381
382
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

383
384
    assert g.has_edges_between(0, 1, 'follows')
    assert not g.has_edges_between(0, 0, 'follows')
385
386
387
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

388
389
    assert g.has_edges_between(0, N2, 'plays')
    assert not g.has_edges_between(0, 0, 'plays')
390
391
392
393
394
395
396
397
398
399
400
401
402
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

403
404
    assert g.edge_ids(0, 1, etype='follows') == 0
    assert g.edge_ids(0, N2, etype='plays') == 0
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

421
422
    assert g.in_degrees(0, 'follows') == 0
    assert g.in_degrees(1, 'follows') == 1
423
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
424
425
    assert g.in_degrees(0, 'plays') == 0
    assert g.in_degrees(N2, 'plays') == 1
426
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
427
428
    assert g.out_degrees(0, 'follows') == 1
    assert g.out_degrees(1, 'follows') == 0
429
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
430
431
    assert g.out_degrees(0, 'plays') == 1
    assert g.out_degrees(N2, 'plays') == 0
432
433
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

434
435
436
437
438
def test_edge_ids():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
439
440
        ('user', 'follows', 'user'): (F.tensor([0], F.int64), F.tensor([1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
441
        {'user': N1, 'game': N1})
442
443
    with pytest.raises(DGLError):
        eid = g.edge_ids(0, 0, etype='follows')
444
445

    g2 = dgl.heterograph({
446
447
448
        ('user', 'follows', 'user'): (F.tensor([0, 0], F.int64), F.tensor([1, 1], F.int64)),
        ('user', 'plays', 'game'): (F.tensor([0], F.int64), F.tensor([N2], F.int64))},
        {'user': N1, 'game': N1}, device=F.cpu())
449

450
451
    eid = g2.edge_ids(0, 1, etype='follows')
    assert eid == 0
452

453
@parametrize_dtype
454
455
def test_adj(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    adj = F.sparse_to_numpy(g.adj(etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
    adj = F.sparse_to_numpy(g.adj(etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

    adj = g.adj(scipy_fmt='csr', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='coo', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='csr', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = g.adj(scipy_fmt='coo', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].adj())
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

509
@parametrize_dtype
510
511
def test_inc(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
547
548

@parametrize_dtype
549
def test_view(idtype):
550
    # test single node type
551
552
553
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
577
    # test data view
578
    g = create_test_heterograph(idtype)
579
580

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
581
582
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
583
    assert F.array_equal(f1, f2)
584
    assert F.array_equal(g.nodes('user'), F.arange(0, 3, idtype))
585
586
587
588
589
590
591
592
593
594
595
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
596
597

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
598
599
600
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
601
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
602
    assert F.array_equal(f3, f5)
603
    assert F.array_equal(g.edges(etype='follows', form='eid'), F.arange(0, 2, idtype))
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
619
    assert F.array_equal(g.srcnodes('user'), F.arange(0, 3, idtype))
620
621
622
623
624
625
626
    g.srcnodes['user'].data.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
627
    assert F.array_equal(g.dstnodes('user'), F.arange(0, 3, idtype))
628
629
    g.dstnodes['user'].data.pop('h')

630
@parametrize_dtype
631
def test_view1(idtype):
Minjie Wang's avatar
Minjie Wang committed
632
    # test relation view
633
    HG = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
634
635
636
637
638
639
640
641
642
643
644
645
646
647
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
648
                assert g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
649
650
651
652
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
653
                assert not g.has_edges_between(src, dst)
Minjie Wang's avatar
Minjie Wang committed
654
655
656
657
658
659
660
661
662
663
664
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
665
            assert g.in_degrees(0) == len(pred)
Minjie Wang's avatar
Minjie Wang committed
666
667
668
669
670
671
672

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
673
            assert g.out_degrees(0) == len(succ)
Minjie Wang's avatar
Minjie Wang committed
674
675
676

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
677
678
679
                assert g.edge_ids(src, dst, etype=etype) == i
                _, _, eid = g.edge_ids(src, dst, etype=etype, return_uv=True)
                assert eid == i
Minjie Wang's avatar
Minjie Wang committed
680
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
681
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
682
683
684
            u, v, e = F.asnumpy(u), F.asnumpy(v), F.asnumpy(e)
            assert u[e].tolist() == srcs
            assert v[e].tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
706
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
751
    assert F.array_equal(g.nodes(), F.arange(0, 3, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
752
753
754
755
756

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
757
    assert F.array_equal(g.edges(form='eid'), F.arange(0, 2, g.idtype))
Minjie Wang's avatar
Minjie Wang committed
758

759
@parametrize_dtype
760
def test_flatten(idtype):
Minjie Wang's avatar
Minjie Wang committed
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
776
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
777
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
778
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
779
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
780
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
781
782
783
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
784
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
785
786
787
788
789
790
791
792
793
794
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']
795
796
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
797
798
799
800
801
802
803
804

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
805
    assert set(zip(etypes, eids)) == set([(3, 0), (3, 1), (2, 1), (2, 0), (2, 3), (2, 2)])
Minjie Wang's avatar
Minjie Wang committed
806
807
808
809

    check_mapping(g, fg)

    fg = g['user', :, 'user']
810
811
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
812
813
814
815
816
817
818
819
820
821
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
822
823
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
824
825
826
827
828
829
830
831
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
832
833
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
834
835
836
837
838
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
839
840
841
842
843
844
845
846
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2], [1, 2, 3]),
        ('user', 'knows', 'user'): ([0, 2], [2, 3])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.randn((4, 3))
    g.edges['follows'].data['w'] = F.randn((3, 2))
    g.nodes['user'].data['hh'] = F.randn((4, 5))
    g.edges['knows'].data['ww'] = F.randn((2, 10))
Minjie Wang's avatar
Minjie Wang committed
847
848

    fg = g['user', :, 'user']
849
850
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
851
852
853
854
855
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
856
857
    assert fg.idtype == g.idtype
    assert fg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
858
859
860
861
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

862
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
863
@parametrize_dtype
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
def test_to_device(idtype):
    # TODO: rewrite this test case to accept different graphs so we
    #  can test reverse graph and batched graph
    g = create_test_heterograph(idtype)
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    assert g.device == F.ctx()
    g = g.to(F.cpu())
    assert g.device == F.cpu()
    assert F.context(g.nodes['user'].data['h']) == F.cpu()
    assert F.context(g.nodes['game'].data['i']) == F.cpu()
    assert F.context(g.edges['plays'].data['e']) == F.cpu()
    for ntype in g.ntypes:
        assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
    for etype in g.canonical_etypes:
        assert F.context(g.batch_num_edges(etype)) == F.cpu()

882
    if F.is_cuda_available():
883
        g1 = g.to(F.cuda())
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        assert g1.device == F.cuda()
        assert F.context(g1.nodes['user'].data['h']) == F.cuda()
        assert F.context(g1.nodes['game'].data['i']) == F.cuda()
        assert F.context(g1.edges['plays'].data['e']) == F.cuda()
        for ntype in g1.ntypes:
            assert F.context(g1.batch_num_nodes(ntype)) == F.cuda()
        for etype in g1.canonical_etypes:
            assert F.context(g1.batch_num_edges(etype)) == F.cuda()
        assert F.context(g.nodes['user'].data['h']) == F.cpu()
        assert F.context(g.nodes['game'].data['i']) == F.cpu()
        assert F.context(g.edges['plays'].data['e']) == F.cpu()
        for ntype in g.ntypes:
            assert F.context(g.batch_num_nodes(ntype)) == F.cpu()
        for etype in g.canonical_etypes:
            assert F.context(g.batch_num_edges(etype)) == F.cpu()
        with pytest.raises(DGLError):
            g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
        with pytest.raises(DGLError):
            g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
903

904
905
906
907
908
909
910
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
@parametrize_dtype
@pytest.mark.parametrize('g', get_cases(['block']))
def test_to_device2(g, idtype):
    g = g.astype(idtype)
    g = g.to(F.cpu())
    assert g.device == F.cpu()
911
912
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
913
914
915
916
        assert g1.device == F.cuda()
        assert g1.ntypes == g.ntypes
        assert g1.etypes == g.etypes
        assert g1.canonical_etypes == g.canonical_etypes
917

918
@parametrize_dtype
919
def test_convert_bound(idtype):
920
    def _test_bipartite_bound(data, card):
921
        with pytest.raises(DGLError):
922
923
924
            dgl.heterograph({
                ('_U', '_E', '_V'): data
            }, {'_U': card[0], '_V': card[1]}, idtype=idtype, device=F.ctx())
925
926

    def _test_graph_bound(data, card):
927
928
        with pytest.raises(DGLError):
            dgl.graph(data, num_nodes=card, idtype=idtype, device=F.ctx())
929

930
931
932
933
    _test_bipartite_bound(([1, 2], [1, 2]), (2, 3))
    _test_bipartite_bound(([0, 1], [1, 4]), (2, 3))
    _test_graph_bound(([1, 3], [1, 2]), 3)
    _test_graph_bound(([0, 1], [1, 3]), 3)
934
935


936
@parametrize_dtype
937
938
def test_convert(idtype):
    hg = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
939
940
941
942
943
944
945
946
947
948
949
950
951
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

952
    g = dgl.to_homogeneous(hg, ndata=['h'], edata=['w'])
953
954
    assert g.idtype == idtype
    assert g.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
980
        hg2 = dgl.to_heterogeneous(
981
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
982
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
983
984
        assert hg2.idtype == hg.idtype
        assert hg2.device == hg.device
Minjie Wang's avatar
Minjie Wang committed
985
986
987
988
989
990
991
992
993
994
995
996
997
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
998
    g = dgl.graph(([0, 1, 2, 0], [2, 2, 3, 3]), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
999
1000
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
1001
    hg = dgl.to_heterogeneous(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
1002
1003
    assert hg.idtype == idtype
    assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
1017
    g = dgl.graph(((0, 0), (1, 2)), idtype=idtype, device=F.ctx())
Minjie Wang's avatar
Minjie Wang committed
1018
1019
1020
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
1021
        hg = dgl.to_heterogeneous(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1022
1023
        assert hg.idtype == g.idtype
        assert hg.device == g.device
Minjie Wang's avatar
Minjie Wang committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1033
    # hetero_to_homo test case 2
1034
1035
1036
1037
    hg = dgl.heterograph({
        ('_U', '_E', '_V'): ([0, 1], [0, 1])
    }, {'_U': 2, '_V': 3}, idtype=idtype, device=F.ctx())
    g = dgl.to_homogeneous(hg)
1038
1039
    assert hg.idtype == g.idtype
    assert hg.device == g.device
1040
1041
    assert g.number_of_nodes() == 5

1042
@parametrize_dtype
1043
1044
def test_metagraph_reachable(idtype):
    g = create_test_heterograph(idtype)
Mufei Li's avatar
Mufei Li committed
1045
1046
1047
1048
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1049
    assert new_g.idtype == idtype
1050
    assert new_g.ntypes == ['game', 'user']
Mufei Li's avatar
Mufei Li committed
1051
1052
1053
1054
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1055
    assert new_g.idtype == idtype
Mufei Li's avatar
Mufei Li committed
1056
1057
1058
1059
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1060
1061
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
1062
1063
def test_subgraph_mask(idtype):
    g = create_test_heterograph(idtype)
1064
1065
1066
1067
1068
1069
1070
1071
1072
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1073
1074
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1075
1076
1077
1078
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1079
                             F.tensor([1, 2], idtype))
1080
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1081
                             F.tensor([0], idtype))
1082
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1083
                             F.tensor([1], idtype))
1084
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1085
                             F.tensor([1], idtype))
1086
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1087
                             F.tensor([1], idtype))
1088
1089
1090
1091
1092
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

1093
1094
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.bool),
                      'game': F.tensor([True, False, False, False], dtype=F.bool)})
1095
    _check_subgraph(g, sg1)
1096
1097
1098
1099
1100
1101
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.bool),
                               'plays': F.tensor([False, True, False, False], dtype=F.bool),
                               'wishes': F.tensor([False, True], dtype=F.bool)})
        _check_subgraph(g, sg2)
1102

1103
@parametrize_dtype
1104
1105
def test_subgraph(idtype):
    g = create_test_heterograph(idtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1106
1107
1108
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1109
1110
1111
1112
1113
1114
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1115
1116
        assert sg.idtype == g.idtype
        assert sg.device == g.device
1117
1118
1119
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1120
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1121
                             F.tensor([1, 2], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1122
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1123
                             F.tensor([0], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1124
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1125
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1126
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1127
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1128
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
1129
                             F.tensor([1], g.idtype))
Minjie Wang's avatar
Minjie Wang committed
1130
1131
1132
1133
1134
1135
1136
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
1137
1138
1139
1140
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
        _check_subgraph(g, sg2)
Minjie Wang's avatar
Minjie Wang committed
1141

1142
    # backend tensor input
1143
1144
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=idtype),
                      'game': F.tensor([0], dtype=idtype)})
1145
    _check_subgraph(g, sg1)
1146
1147
1148
1149
1150
1151
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=idtype),
                               'plays': F.tensor([1], dtype=idtype),
                               'wishes': F.tensor([1], dtype=idtype)})
        _check_subgraph(g, sg2)
1152
1153
1154
1155
1156

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
1157
1158
1159
1160
1161
1162
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg2 = g.edge_subgraph({'follows': np.array([1]),
                               'plays': np.array([1]),
                               'wishes': np.array([1])})
        _check_subgraph(g, sg2)
1163

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1164
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
1165
1166
        assert sg.idtype == g.idtype
        assert sg.device == g.device
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1167
1168
1169
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1170
1171
1172

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1173
                                 F.tensor([1, 2], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1174
1175
1176
1177
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1178
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
1179
                             F.tensor([1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1180
1181
1182

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1183
1184
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1185
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1186
1187
1188
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1189
1190
1191

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
1192
                                 F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1193
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
1194
                                 F.tensor([0], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1195
1196
1197
1198
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1199
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
1200
                             F.tensor([0, 1], g.idtype))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1201
1202
1203

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    if F._default_context_str != 'gpu':
        # TODO(minjie): enable this later
        sg1_graph = g_graph.edge_subgraph([1])
        _check_subgraph_single_ntype(g_graph, sg1_graph)
        sg1_graph = g_graph.edge_subgraph([1], preserve_nodes=True)
        _check_subgraph_single_ntype(g_graph, sg1_graph, True)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
        sg2_bipartite = g_bipartite.edge_subgraph([0, 1], preserve_nodes=True)
        _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1214

1215
    def _check_typed_subgraph1(g, sg):
1216
1217
        assert g.idtype == sg.idtype
        assert g.device == sg.device
Minjie Wang's avatar
Minjie Wang committed
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1229
1230
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1231
1232
1233
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1245
    sg3 = g.node_type_subgraph(['user', 'game'])
1246
1247
1248
1249
1250
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1251

1252
@parametrize_dtype
1253
def test_apply(idtype):
1254
1255
1256
1257
1258
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1259
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1271

Minjie Wang's avatar
Minjie Wang committed
1272
1273
1274
1275
1276
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

    # test fail case
    # fail due to multiple types
1277
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1278
1279
        g.apply_nodes(node_udf)

1280
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1281
1282
        g.apply_edges(edge_udf)

1283
@parametrize_dtype
1284
def test_level2(idtype):
Minjie Wang's avatar
Minjie Wang committed
1285
1286
1287
1288
1289
1290
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1291
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1314

Minjie Wang's avatar
Minjie Wang committed
1315
1316
    # test fail case
    # fail due to multiple types
1317
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
        g.send_and_recv([2, 3], mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
1337
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
        g.pull(1, mfunc, rfunc)

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
1358
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
        g.update_all(mfunc, rfunc)

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1388
1389
1390
1391
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1392
1393
1394
1395
1396
1397
1398
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
1399
    with pytest.raises(DGLError):
Minjie Wang's avatar
Minjie Wang committed
1400
1401
1402
1403
1404
1405
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')

    g.nodes['game'].data.clear()
1406

1407
@parametrize_dtype
1408
def test_updates(idtype):
1409
1410
1411
1412
1413
1414
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1415
    g = create_test_heterograph(idtype)
1416
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1417
    g.nodes['user'].data['h'] = x
1418
1419
1420
1421
1422
1423
1424

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1425
        y = g.nodes['game'].data['y']
1426
1427
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1428
        del g.nodes['game'].data['y']
1429
1430

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1431
        y = g.nodes['game'].data['y']
1432
1433
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1434
        del g.nodes['game'].data['y']
1435
1436
1437

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1438
        y = g.nodes['game'].data['y']
1439
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1440
        del g.nodes['game'].data['y']
1441
1442
1443

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1444
        y = g.nodes['game'].data['y']
1445
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1446
1447
        del g.nodes['game'].data['y']

1448
1449

@parametrize_dtype
1450
1451
def test_backward(idtype):
    g = create_test_heterograph(idtype)
Minjie Wang's avatar
Minjie Wang committed
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1466

1467
1468

@parametrize_dtype
1469
def test_empty_heterograph(idtype):
1470
1471
1472
1473
1474
1475
1476
1477
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))

1478
    g = dgl.heterograph({('user', 'follows', 'user'): ([], [])}, idtype=idtype, device=F.ctx())
1479
1480
    assert g.idtype == idtype
    assert g.device == F.ctx()
1481
1482
1483
1484
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1485
1486
    g = dgl.heterograph({('user', 'plays', 'game'): ([], []), ('developer', 'develops', 'game'):
        ([0, 1], [0, 1])}, idtype=idtype, device=F.ctx())
1487
1488
    assert g.idtype == idtype
    assert g.device == F.ctx()
1489
1490
1491
1492
1493
1494
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1495
1496
@parametrize_dtype
def test_types_in_function(idtype):
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

1529
1530
    g = dgl.heterograph({('user', 'follow', 'user'): ((0, 1), (1, 2))},
                        idtype=idtype, device=F.ctx())
1531
1532
1533
1534
1535
1536
1537
1538
1539
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

1540
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
1541
1542
1543
1544
1545
1546
1547
1548
1549
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

1550
@parametrize_dtype
1551
def test_stack_reduce(idtype):
1552
1553
1554
1555
1556
1557
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1558
    g = create_test_heterograph(idtype)
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

1577
@parametrize_dtype
1578
def test_isolated_ntype(idtype):
1579
    g = dgl.heterograph({
1580
        ('A', 'AB', 'B'): ([0, 1, 2], [1, 2, 3])},
1581
1582
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1583
1584
1585
1586
1587
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
1588
        ('A', 'AC', 'C'): ([0, 1, 2], [1, 2, 3])},
1589
1590
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4},
        idtype=idtype, device=F.ctx())
1591
1592
1593
1594
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1595
    G = dgl.graph(([0, 1, 2], [4, 5, 6]), num_nodes=11, idtype=idtype, device=F.ctx())
1596
1597
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
1598
    g = dgl.to_heterogeneous(G, ['A', 'B', 'C'], ['AB'])
1599
1600
1601
1602
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1603
1604

@parametrize_dtype
1605
def test_ismultigraph(idtype):
1606
1607
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5])},
                         {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1608
    assert g1.is_multigraph == False
1609
1610
    g2 = dgl.heterograph({('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
                         {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1611
    assert g2.is_multigraph == True
1612
    g3 = dgl.graph(((0, 1), (1, 2)), num_nodes=6, idtype=idtype, device=F.ctx())
1613
    assert g3.is_multigraph == False
1614
    g4 = dgl.graph(([0, 0, 1], [1, 1, 2]), num_nodes=6, idtype=idtype, device=F.ctx())
1615
    assert g4.is_multigraph == True
1616
1617
1618
1619
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1620
    assert g.is_multigraph == False
1621
1622
1623
1624
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5])},
        {'A': 6, 'B': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1625
    assert g.is_multigraph == True
1626
1627
1628
1629
    g = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1, 2], [1, 2, 5, 5]),
        ('A', 'AA', 'A'): ([0, 0, 1], [1, 1, 2])},
        {'A': 6, 'B': 6}, idtype=idtype, device=F.ctx())
1630
    assert g.is_multigraph == True
1631
1632
1633
1634
    g = dgl.heterograph({
        ('A', 'AC', 'C'): ([0, 0, 0, 1], [1, 1, 2, 5]),
        ('A', 'AA', 'A'): ([0, 1], [1, 2])},
        {'A': 6, 'C': 6}, idtype=idtype, device=F.ctx())
1635
1636
    assert g.is_multigraph == True

1637
@parametrize_dtype
1638
def test_bipartite(idtype):
1639
1640
    g1 = dgl.heterograph({('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5])},
                         idtype=idtype, device=F.ctx())
1641
1642
1643
1644
1645
1646
1647
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1648
1649
1650
1651
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
    g2 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0])
    }, idtype=idtype, device=F.ctx())

    assert g2.is_unibipartite
    assert g2.srctypes == ['A']
    assert set(g2.dsttypes) == {'B', 'C'}
    assert g2.number_of_nodes('A') == 2
    assert g2.number_of_nodes('B') == 6
    assert g2.number_of_nodes('C') == 1
    assert g2.number_of_src_nodes('A') == 2
    assert g2.number_of_src_nodes() == 2
    assert g2.number_of_dst_nodes('B') == 6
    assert g2.number_of_dst_nodes('C') == 1
    g2.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g2.srcnodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['A'].data['h'], g2.srcdata['h'])
    assert F.array_equal(g2.nodes['SRC/A'].data['h'], g2.srcdata['h'])

    g3 = dgl.heterograph({
        ('A', 'AB', 'B'): ([0, 0, 1], [1, 2, 5]),
        ('A', 'AC', 'C'): ([1, 0], [0, 0]),
        ('A', 'AA', 'A'): ([0, 1], [0, 1])
    }, idtype=idtype, device=F.ctx())
    assert not g3.is_unibipartite
1689

1690
@parametrize_dtype
1691
def test_dtype_cast(idtype):
1692
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1693
    assert g.idtype == idtype
1694
1695
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
1696
    if idtype == "int32":
1697
        g_cast = g.long()
1698
        assert g_cast.idtype == F.int64
1699
1700
    else:
        g_cast = g.int()
1701
1702
        assert g_cast.idtype == F.int32
    test_utils.check_graph_equal(g, g_cast, check_idtype=False)
1703

1704
1705
@parametrize_dtype
def test_format(idtype):
1706
    # single relation
1707
    g = dgl.graph(([0, 1, 0, 2], [0, 1, 1, 0]), idtype=idtype, device=F.ctx())
1708
1709
1710
1711
1712
1713
    assert g.formats()['created'] == ['coo']
    g1 = g.formats(['coo', 'csr', 'csc'])
    assert len(g1.formats()['created']) + len(g1.formats()['not created']) == 3
    g1.create_format_()
    assert len(g1.formats()['created']) == 3
    assert g.formats()['created'] == ['coo']
1714
1715
1716

    # multiple relation
    g = dgl.heterograph({
1717
1718
1719
1720
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1])
        }, idtype=idtype, device=F.ctx())
1721
1722
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
1723
    g1 = g.formats('csc')
1724
1725
1726
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
1727
1728
    assert g1.formats()['created'] == ['csc']
    assert len(g1.formats()['not created']) == 0
1729

1730
1731
@parametrize_dtype
def test_edges_order(idtype):
1732
1733
1734
1735
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
1736
    ), idtype=idtype, device=F.ctx())
1737

1738
    print(g.formats())
1739
    src, dst = g.all_edges(order='srcdst')
1740
1741
    assert F.array_equal(src, F.tensor([0, 0, 0, 1, 2], dtype=idtype))
    assert F.array_equal(dst, F.tensor([1, 1, 2, 2, 1], dtype=idtype))
1742

1743
@parametrize_dtype
1744
def test_reverse(idtype):
1745
1746
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
1747
    }, idtype=idtype, device=F.ctx())
1748
    gidx = g._graph
1749
    r_gidx = gidx.reverse()
1750
1751
1752
1753
1754

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1755
1756
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1757
1758

    # force to start with 'csr'
1759
1760
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
1761
    r_gidx = gidx.reverse()
1762
1763
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
1764
1765
1766
1767
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1768
1769
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1770
1771

    # force to start with 'csc'
1772
1773
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
1774
    r_gidx = gidx.reverse()
1775
1776
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
1777
1778
1779
1780
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1781
1782
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1783
1784
1785
1786
1787

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
1788
        }, idtype=idtype, device=F.ctx())
1789
    gidx = g._graph
1790
1791
1792
1793
1794
1795
1796
1797
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

1798
1799
1800
1801
1802
1803
1804
1805
1806
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1807
1808
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1809
1810
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
1811
1812
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1813
1814
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
1815
1816
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1817
1818

    # force to start with 'csr'
1819
1820
    gidx = gidx.formats('csr')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
1821
    r_gidx = gidx.reverse()
1822
    # three node types and three edge types
1823
1824
    assert 'csr' in gidx.formats()['created']
    assert 'csc' in r_gidx.formats()['created']
1825
1826
1827
1828
1829
1830
1831
1832
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1833
1834
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1835
1836
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
1837
1838
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1839
1840
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
1841
1842
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1843
1844

    # force to start with 'csc'
1845
1846
    gidx = gidx.formats('csc')
    gidx = gidx.formats(['coo', 'csr', 'csc'])
1847
    r_gidx = gidx.reverse()
1848
    # three node types and three edge types
1849
1850
    assert 'csc' in gidx.formats()['created']
    assert 'csr' in r_gidx.formats()['created']
1851
1852
1853
1854
1855
1856
1857
1858
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
1859
1860
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1861
1862
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
1863
1864
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)
1865
1866
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
    assert F.array_equal(g_s, rg_d)
    assert F.array_equal(g_d, rg_s)

@parametrize_dtype
def test_clone(idtype):
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())

    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    assert F.array_equal(g.ndata['h'], new_g.ndata['h'])
    assert F.array_equal(g.edata['h'], new_g.edata['h'])
    # data change
    new_g.ndata['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.ndata['h'], new_g.ndata['h']) == False)
    g.edata['h'] = F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())
    assert (F.array_equal(g.edata['h'], new_g.edata['h']) == False)
    # graph structure change
    g.add_nodes(1)
    assert g.number_of_nodes() != new_g.number_of_nodes()
    new_g.add_edges(1, 1)
    assert g.number_of_edges() != new_g.number_of_edges()

    # zero data graph
1895
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1896
1897
1898
1899
1900
    new_g = g.clone()
    assert g.number_of_nodes() == new_g.number_of_nodes()
    assert g.number_of_edges() == new_g.number_of_edges()

    # heterograph
1901
    g = create_test_heterograph3(idtype)
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    new_g = g.clone()
    assert g.number_of_nodes('user') == new_g.number_of_nodes('user')
    assert g.number_of_nodes('game') == new_g.number_of_nodes('game')
    assert g.number_of_nodes('developer') == new_g.number_of_nodes('developer')
    assert g.number_of_edges('plays') == new_g.number_of_edges('plays')
    assert g.number_of_edges('develops') == new_g.number_of_edges('develops')
    assert F.array_equal(g.nodes['user'].data['h'], new_g.nodes['user'].data['h'])
    assert F.array_equal(g.nodes['game'].data['h'], new_g.nodes['game'].data['h'])
    assert F.array_equal(g.edges['plays'].data['h'], new_g.edges['plays'].data['h'])
    assert g.device == new_g.device
    assert g.idtype == new_g.idtype
    u, v = g.edges(form='uv', order='eid', etype='plays')
    nu, nv = new_g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, nu)
    assert F.array_equal(v, nv)
    # graph structure change
    u = F.tensor([0, 4], dtype=idtype)
    v = F.tensor([2, 6], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert u.shape[0] != nu.shape[0]
    assert v.shape[0] != nv.shape[0]
    assert g.nodes['user'].data['h'].shape[0] != new_g.nodes['user'].data['h'].shape[0]
    assert g.nodes['game'].data['h'].shape[0] != new_g.nodes['game'].data['h'].shape[0]
    assert g.edges['plays'].data['h'].shape[0] != new_g.edges['plays'].data['h'].shape[0]


@parametrize_dtype
def test_add_edges(idtype):
    # homogeneous graph
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 1, 1], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # zero data graph
1986
    g = dgl.graph(([], []), num_nodes=0, idtype=idtype, device=F.ctx())
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
    u = F.tensor([0, 1], dtype=idtype)
    v = F.tensor([2, 2], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes() == 3
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([2, 2], dtype=idtype))

    # bipartite graph
2001
2002
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
    u = 0
    v = 1
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 3
    u = [0]
    v = [1]
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 4
    u = F.tensor(u, dtype=idtype)
    v = F.tensor(v, dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 5
    u, v = g.edges(form='uv')
    assert F.array_equal(u, F.tensor([0, 1, 0, 0, 0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 1, 1, 1], dtype=idtype))

    # node id larger than current max node id
2029
2030
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v)
    assert g.device == F.ctx()
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))

    # has data
2043
2044
2045
2046
2047
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
    g.edata['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    e_feat = {'h' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx()),
              'hh' : F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    g.add_edges(u, v, e_feat)
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_edges() == 4
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([1, 2, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 0], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1, 1, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['hh'], F.tensor([0, 0, 2, 2], dtype=idtype))

    # heterogeneous graph
2066
    g = create_test_heterograph3(idtype)
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.add_edges(u, v, etype='plays')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 2
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 1, 2, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0, 1, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 1, 1, 1, 0, 0], dtype=idtype))

    # add with feature
    e_feat = {'h': F.copy_to(F.tensor([2, 2], dtype=idtype), ctx=F.ctx())}
    u = F.tensor([0, 2], dtype=idtype)
    v = F.tensor([2, 3], dtype=idtype)
    g.nodes['game'].data['h'] =  F.copy_to(F.tensor([2, 2, 1, 1], dtype=idtype), ctx=F.ctx())
    g.add_edges(u, v, data=e_feat, etype='develops')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 3
    assert g.number_of_edges('plays') == 6
    assert g.number_of_edges('develops') == 4
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([0, 1, 0, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 2, 3], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['develops'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))

@parametrize_dtype
def test_add_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1)
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 0], dtype=idtype))

    # zero node graph
2110
    g = dgl.graph(([], []), num_nodes=3, idtype=idtype, device=F.ctx())
2111
2112
2113
2114
2115
2116
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1], dtype=idtype), ctx=F.ctx())
    g.add_nodes(1, data={'h' : F.copy_to(F.tensor([2],  dtype=idtype), ctx=F.ctx())})
    assert g.number_of_nodes() == 4
    assert F.array_equal(g.ndata['h'], F.tensor([1, 1, 1, 2], dtype=idtype))

    # bipartite graph
2117
2118
    g = dgl.heterograph({('user', 'plays', 'game'): ([0, 1], [1, 2])},
                        idtype=idtype, device=F.ctx())
2119
2120
2121
2122
2123
2124
2125
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='user')
    assert g.number_of_nodes('user') == 4
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([0, 0, 2, 2], dtype=idtype))
    g.add_nodes(2, ntype='game')
    assert g.number_of_nodes('game') == 5

    # heterogeneous graph
2126
    g = create_test_heterograph3(idtype)
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
    g.add_nodes(1, ntype='user')
    g.add_nodes(2, data={'h' : F.copy_to(F.tensor([2, 2],  dtype=idtype), ctx=F.ctx())}, ntype='game')
    g.add_nodes(0, ntype='developer')
    assert g.number_of_nodes('user') == 4
    assert g.number_of_nodes('game') == 4
    assert g.number_of_nodes('developer') == 2
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1, 0], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2, 2], dtype=idtype))

@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet has error with (0,) shape tensor.")
@parametrize_dtype
def test_remove_edges(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has node data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.ndata['h'], F.tensor([1, 2, 3], dtype=idtype))

    # has edge data
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(0)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.edata['h'], F.tensor([2], dtype=idtype))

    # invalid eid
    assert_fail = False
    try:
        g.remove_edges(1)
    except:
        assert_fail = True
    assert assert_fail

    # bipartite graph
2181
2182
2183
    g = dgl.heterograph({
        ('user', 'plays', 'game'): ([0, 1], [1, 2])
    }, idtype=idtype, device=F.ctx())
2184
2185
2186
2187
2188
2189
    e = 0
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2190
2191
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
    e = [0]
    g.remove_edges(e)
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
    e = F.tensor([0], dtype=idtype)
    g.remove_edges(e)
    assert g.number_of_edges() == 0

    # has data
2203
2204
2205
2206
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
    g.nodes['user'].data['h'] = F.copy_to(F.tensor([1, 1], dtype=idtype), ctx=F.ctx())
    g.nodes['game'].data['h'] = F.copy_to(F.tensor([2, 2, 2], dtype=idtype), ctx=F.ctx())
2207
2208
2209
2210
2211
2212
2213
2214
    g.edata['h'] = F.copy_to(F.tensor([1, 2], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1)
    assert g.number_of_edges() == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2, 2], dtype=idtype))
    assert F.array_equal(g.edata['h'], F.tensor([1], dtype=idtype))

    # heterogeneous graph
2215
    g = create_test_heterograph3(idtype)
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_edges(1, etype='plays')
    assert g.number_of_edges('plays') == 3
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 1, 1], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([1, 3, 4], dtype=idtype))
    # remove all edges of 'develops'
    g.remove_edges([0, 1], etype='develops')
    assert g.number_of_edges('develops') == 0
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2, 2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))

@parametrize_dtype
def test_remove_nodes(idtype):
    # homogeneous Graphs
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = 0
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = [1]
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 0
    g = dgl.graph(([0, 1], [1, 2]), idtype=idtype, device=F.ctx())
    n = F.tensor([2], dtype=idtype)
    g.remove_nodes(n)
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))

    # invalid nid
    assert_fail = False
    try:
        g.remove_nodes(3)
    except:
        assert_fail = True
    assert assert_fail

    # has node and edge data
    g = dgl.graph(([0, 0, 2], [0, 1, 2]), idtype=idtype, device=F.ctx())
    g.ndata['hv'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['he'] = F.copy_to(F.tensor([1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(F.tensor([0], dtype=idtype))
    assert g.number_of_nodes() == 2
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
    assert F.array_equal(g.ndata['hv'], F.tensor([2, 3], dtype=idtype))
    assert F.array_equal(g.edata['he'], F.tensor([3], dtype=idtype))

    # node id larger than current max node id
2277
2278
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2279
2280
2281
2282
2283
2284
2285
2286
    n = 0
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([2], dtype=idtype))
2287
2288
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2289
2290
2291
2292
2293
2294
2295
2296
    n = [1]
    g.remove_nodes(n, ntype='user')
    assert g.number_of_nodes('user') == 1
    assert g.number_of_nodes('game') == 3
    assert g.number_of_edges() == 1
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0], dtype=idtype))
    assert F.array_equal(v, F.tensor([1], dtype=idtype))
2297
2298
    g = dgl.heterograph(
        {('user', 'plays', 'game'): ([0, 1], [1, 2])}, idtype=idtype, device=F.ctx())
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
    n = F.tensor([0], dtype=idtype)
    g.remove_nodes(n, ntype='game')
    assert g.number_of_nodes('user') == 2
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges() == 2
    u, v = g.edges(form='uv', order='eid')
    assert F.array_equal(u, F.tensor([0, 1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0 ,1], dtype=idtype))

    # heterogeneous graph
2309
    g = create_test_heterograph3(idtype)
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
    g.edges['plays'].data['h'] = F.copy_to(F.tensor([1, 2, 3, 4], dtype=idtype), ctx=F.ctx())
    g.remove_nodes(0, ntype='game')
    assert g.number_of_nodes('user') == 3
    assert g.number_of_nodes('game') == 1
    assert g.number_of_nodes('developer') == 2
    assert g.number_of_edges('plays') == 2
    assert g.number_of_edges('develops') == 1
    assert F.array_equal(g.nodes['user'].data['h'], F.tensor([1, 1, 1], dtype=idtype))
    assert F.array_equal(g.nodes['game'].data['h'], F.tensor([2], dtype=idtype))
    assert F.array_equal(g.nodes['developer'].data['h'], F.tensor([3, 3], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='plays')
    assert F.array_equal(u, F.tensor([1, 2], dtype=idtype))
    assert F.array_equal(v, F.tensor([0, 0], dtype=idtype))
    assert F.array_equal(g.edges['plays'].data['h'], F.tensor([3, 4], dtype=idtype))
    u, v = g.edges(form='uv', order='eid', etype='develops')
    assert F.array_equal(u, F.tensor([1], dtype=idtype))
    assert F.array_equal(v, F.tensor([0], dtype=idtype))
2327

2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
@parametrize_dtype
def test_frame(idtype):
    g = dgl.graph(([0, 1, 2], [1, 2, 3]), idtype=idtype, device=F.ctx())
    g.ndata['h'] = F.copy_to(F.tensor([0, 1, 2, 3], dtype=idtype), ctx=F.ctx())
    g.edata['h'] = F.copy_to(F.tensor([0, 1, 2], dtype=idtype), ctx=F.ctx())

    # remove nodes
    sg = dgl.remove_nodes(g, [3])
    # check for lazy update
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    assert sg.ndata['h'].shape[0] == 3
    assert sg.edata['h'].shape[0] == 2
    # update after read
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2], dtype=idtype))
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, F.tensor([0, 1], dtype=idtype))

    ng = dgl.add_nodes(sg, 1)
    assert ng.ndata['h'].shape[0] == 4
    assert F.array_equal(ng._node_frames[0]._columns['h'].storage, F.tensor([0, 1, 2, 0], dtype=idtype))
    ng = dgl.add_edges(ng, [3], [1])
    assert ng.edata['h'].shape[0] == 3
    assert F.array_equal(ng._edge_frames[0]._columns['h'].storage, F.tensor([0, 1, 0], dtype=idtype))

    # multi level lazy update
    sg = dgl.remove_nodes(g, [3])
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    ssg = dgl.remove_nodes(sg, [1])
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(ssg._edge_frames[0]._columns['h'].storage, g.edata['h'])
    # ssg is changed
    assert ssg.ndata['h'].shape[0] == 2
    assert ssg.edata['h'].shape[0] == 0
    assert F.array_equal(ssg._node_frames[0]._columns['h'].storage, F.tensor([0, 2], dtype=idtype))
    # sg still in lazy model
    assert F.array_equal(sg._node_frames[0]._columns['h'].storage, g.ndata['h'])
    assert F.array_equal(sg._edge_frames[0]._columns['h'].storage, g.edata['h'])

@unittest.skipIf(dgl.backend.backend_name == "tensorflow", reason="TensorFlow always create a new tensor")
@unittest.skipIf(F._default_context_str == 'cpu', reason="cpu do not have context change problem")
@parametrize_dtype
def test_frame_device(idtype):
    g = dgl.graph(([0,1,2], [2,3,1]))
    g.ndata['h'] = F.copy_to(F.tensor([1,1,1,2], dtype=idtype), ctx=F.cpu())
    g.ndata['hh'] = F.copy_to(F.ones((4,3), dtype=idtype), ctx=F.cpu())
    g.edata['h'] = F.copy_to(F.tensor([1,2,3], dtype=idtype), ctx=F.cpu())

    g = g.to(F.ctx())
    # lazy device copy
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    print(g.ndata['h'])
    assert F.context(g._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(g._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(g._edge_frames[0]._columns['h'].storage) == F.cpu()

    # lazy device copy in subgraph
    sg = dgl.node_subgraph(g, [0,1,2])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['hh'])
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # back to cpu
    sg = sg.to(F.cpu())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()
    print(sg.ndata['h'])
    print(sg.ndata['hh'])
    print(sg.edata['h'])
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # set some field
    sg = sg.to(F.ctx())
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.cpu()
    sg.ndata['h'][0] = 5
    assert F.context(sg._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(sg._node_frames[0]._columns['hh'].storage) == F.cpu()
    assert F.context(sg._edge_frames[0]._columns['h'].storage) == F.cpu()

    # add nodes
    ng = dgl.add_nodes(sg, 3)
    assert F.context(ng._node_frames[0]._columns['h'].storage) == F.ctx()
    assert F.context(ng._node_frames[0]._columns['hh'].storage) == F.ctx()
    assert F.context(ng._edge_frames[0]._columns['h'].storage) == F.cpu()



2422
if __name__ == '__main__':
2423
2424
2425
2426
2427
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2428
    # test_view("int32")
2429
    # test_view1("int32")
2430
    # test_flatten(F.int32)
2431
2432
    # test_convert_bound()
    # test_convert()
2433
    # test_to_device("int32")
2434
    # test_transform("int32")
2435
2436
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2437
2438
2439
2440
2441
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2442
    # test_empty_heterograph('int32')
2443
2444
2445
2446
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2447
    # test_dtype_cast()
2448
    # test_reverse("int32")
2449
    # test_format()
2450
2451
2452
2453
2454
2455
2456
    #test_add_edges(F.int32)
    #test_add_nodes(F.int32)
    #test_remove_edges(F.int32)
    #test_remove_nodes(F.int32)
    #test_clone(F.int32)
    test_frame(F.int32)
    test_frame_device(F.int32)
2457
    pass