test_distributed_sampling.py 42.7 KB
Newer Older
Jinjing Zhou's avatar
Jinjing Zhou committed
1
2
3
4
import dgl
import unittest
import os
from dgl.data import CitationGraphDataset
5
6
from dgl.data import WN18Dataset
from dgl.distributed import sample_neighbors, sample_etype_neighbors
Jinjing Zhou's avatar
Jinjing Zhou committed
7
8
9
10
11
12
from dgl.distributed import partition_graph, load_partition, load_partition_book
import sys
import multiprocessing as mp
import numpy as np
import backend as F
import time
13
from utils import generate_ip_config, reset_envs
Jinjing Zhou's avatar
Jinjing Zhou committed
14
from pathlib import Path
15
import pytest
16
from scipy import sparse as spsp
17
import random
Jinjing Zhou's avatar
Jinjing Zhou committed
18
19
20
from dgl.distributed import DistGraphServer, DistGraph


21
22
def start_server(rank, tmpdir, disable_shared_mem, graph_name, graph_format=['csc', 'coo'],
                 keep_alive=False):
23
    g = DistGraphServer(rank, "rpc_ip_config.txt", 1, 1,
24
                        tmpdir / (graph_name + '.json'), disable_shared_mem=disable_shared_mem,
25
                        graph_format=graph_format, keep_alive=keep_alive)
Jinjing Zhou's avatar
Jinjing Zhou committed
26
27
28
    g.start()


29
def start_sample_client(rank, tmpdir, disable_shared_mem):
30
31
    gpb = None
    if disable_shared_mem:
32
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
33
    dgl.distributed.initialize("rpc_ip_config.txt")
34
    dist_graph = DistGraph("test_sampling", gpb=gpb)
35
36
37
38
39
    try:
        sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)
    except Exception as e:
        print(e)
        sampled_graph = None
40
    dgl.distributed.exit_client()
Jinjing Zhou's avatar
Jinjing Zhou committed
41
42
    return sampled_graph

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

def start_sample_client_shuffle(rank, tmpdir, disable_shared_mem, g, num_servers, group_id=0):
    os.environ['DGL_GROUP_ID'] = str(group_id)
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64, ctx=F.cpu())
    for i in range(num_servers):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

    src, dst = sampled_graph.edges()
    src = orig_nid[src]
    dst = orig_nid[dst]
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))

69
def start_find_edges_client(rank, tmpdir, disable_shared_mem, eids, etype=None):
70
71
    gpb = None
    if disable_shared_mem:
72
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_find_edges.json', rank)
73
    dgl.distributed.initialize("rpc_ip_config.txt")
74
    dist_graph = DistGraph("test_find_edges", gpb=gpb)
75
    try:
76
        u, v = dist_graph.find_edges(eids, etype=etype)
77
78
79
    except Exception as e:
        print(e)
        u, v = None, None
80
81
    dgl.distributed.exit_client()
    return u, v
Jinjing Zhou's avatar
Jinjing Zhou committed
82

83
84
85
86
def start_get_degrees_client(rank, tmpdir, disable_shared_mem, nids=None):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', rank)
87
    dgl.distributed.initialize("rpc_ip_config.txt")
88
89
90
91
92
93
94
95
96
97
98
99
    dist_graph = DistGraph("test_get_degrees", gpb=gpb)
    try:
        in_deg = dist_graph.in_degrees(nids)
        all_in_deg = dist_graph.in_degrees()
        out_deg = dist_graph.out_degrees(nids)
        all_out_deg = dist_graph.out_degrees()
    except Exception as e:
        print(e)
        in_deg, out_deg, all_in_deg, all_out_deg = None, None, None, None
    dgl.distributed.exit_client()
    return in_deg, out_deg, all_in_deg, all_out_deg

100
def check_rpc_sampling(tmpdir, num_server):
101
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
102
103
104
105
106
107
108
109
110
111
112
113
114

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    print(g.idtype)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=False)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
115
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
Jinjing Zhou's avatar
Jinjing Zhou committed
116
117
118
119
        p.start()
        time.sleep(1)
        pserver_list.append(p)

120
    sampled_graph = start_sample_client(0, tmpdir, num_server > 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
121
122
123
124
125
126
127
128
129
130
131
    print("Done sampling")
    for p in pserver_list:
        p.join()

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))

132
def check_rpc_find_edges_shuffle(tmpdir, num_server):
133
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
134
135
136
137
138

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

139
140
141
    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)
142
143
144
145

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
146
147
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
148
149
150
151
152
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    eids = F.tensor(np.random.randint(g.number_of_edges(), size=100))
153
    u, v = g.find_edges(orig_eid[eids])
154
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids)
155
156
    du = orig_nid[du]
    dv = orig_nid[dv]
157
158
159
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

160
161
162
def create_random_hetero(dense=False, empty=False):
    num_nodes = {'n1': 210, 'n2': 200, 'n3': 220} if dense else \
        {'n1': 1010, 'n2': 1000, 'n3': 1020}
163
164
165
    etypes = [('n1', 'r12', 'n2'),
              ('n1', 'r13', 'n3'),
              ('n2', 'r23', 'n3')]
166
    edges = {}
167
    random.seed(42)
168
169
    for etype in etypes:
        src_ntype, _, dst_ntype = etype
170
171
172
173
        arr = spsp.random(num_nodes[src_ntype] - 10 if empty else num_nodes[src_ntype],
                          num_nodes[dst_ntype] - 10 if empty else num_nodes[dst_ntype],
                          density=0.1 if dense else 0.001,
                          format='coo', random_state=100)
174
        edges[etype] = (arr.row, arr.col)
175
176
177
    g = dgl.heterograph(edges, num_nodes)
    g.nodes['n1'].data['feat'] = F.ones((g.number_of_nodes('n1'), 10), F.float32, F.cpu())
    return g
178
179

def check_rpc_hetero_find_edges_shuffle(tmpdir, num_server):
180
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

    g = create_random_hetero()
    num_parts = num_server

    orig_nid, orig_eid = partition_graph(g, 'test_find_edges', num_parts, tmpdir,
                                         num_hops=1, part_method='metis',
                                         reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1,
                                                   'test_find_edges', ['csr', 'coo']))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

198
199
200
201
202
203
204
205
206
207
208
209
    eids = F.tensor(np.random.randint(g.num_edges('r12'), size=100))
    expect_except = False
    try:
        _, _ = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12'))
    except:
        expect_except = True
    assert expect_except
    u, v = g.find_edges(orig_eid['r12'][eids], etype='r12')
    u1, v1 = g.find_edges(orig_eid['r12'][eids], etype=('n1', 'r12', 'n2'))
    assert F.array_equal(u, u1)
    assert F.array_equal(v, v1)
    du, dv = start_find_edges_client(0, tmpdir, num_server > 1, eids, etype='r12')
210
211
212
213
214
    du = orig_nid['n1'][du]
    dv = orig_nid['n2'][dv]
    assert F.array_equal(u, du)
    assert F.array_equal(v, dv)

215
216
217
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
218
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
219
220
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_find_edges_shuffle(num_server):
221
    reset_envs()
222
223
224
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
225
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), num_server)
226
227
228
        check_rpc_find_edges_shuffle(Path(tmpdirname), num_server)

def check_rpc_get_degree_shuffle(tmpdir, num_server):
229
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_get_degrees', num_parts, tmpdir,
                    num_hops=1, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_get_degrees'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_get_degrees.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']

    nids = F.tensor(np.random.randint(g.number_of_nodes(), size=100))
    in_degs, out_degs, all_in_degs, all_out_degs = start_get_degrees_client(0, tmpdir, num_server > 1, nids)

    print("Done get_degree")
    for p in pserver_list:
        p.join()

    print('check results')
    assert F.array_equal(g.in_degrees(orig_nid[nids]), in_degs)
    assert F.array_equal(g.in_degrees(orig_nid), all_in_degs)
    assert F.array_equal(g.out_degrees(orig_nid[nids]), out_degs)
    assert F.array_equal(g.out_degrees(orig_nid), all_out_degs)

# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
267
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
268
269
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_get_degree_shuffle(num_server):
270
    reset_envs()
271
272
273
274
275
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'distributed'
    with tempfile.TemporaryDirectory() as tmpdirname:
        check_rpc_get_degree_shuffle(Path(tmpdirname), num_server)

276
277
278
#@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
#@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skip('Only support partition with shuffle')
Jinjing Zhou's avatar
Jinjing Zhou committed
279
def test_rpc_sampling():
280
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
281
    import tempfile
282
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
283
    with tempfile.TemporaryDirectory() as tmpdirname:
284
        check_rpc_sampling(Path(tmpdirname), 2)
Jinjing Zhou's avatar
Jinjing Zhou committed
285

286
def check_rpc_sampling_shuffle(tmpdir, num_server, num_groups=1):
287
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
288

Jinjing Zhou's avatar
Jinjing Zhou committed
289
290
291
292
293
294
295
296
297
298
    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
299
    keep_alive = num_groups > 1
Jinjing Zhou's avatar
Jinjing Zhou committed
300
    for i in range(num_server):
301
302
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo'], keep_alive))
Jinjing Zhou's avatar
Jinjing Zhou committed
303
304
305
306
        p.start()
        time.sleep(1)
        pserver_list.append(p)

307
308
309
310
311
312
    pclient_list = []
    num_clients = 1
    for client_id in range(num_clients):
        for group_id in range(num_groups):
            p = ctx.Process(target=start_sample_client_shuffle, args=(client_id, tmpdir, num_server > 1, g, num_server, group_id))
            p.start()
313
            time.sleep(1) # avoid race condition when instantiating DistGraph
314
315
316
317
318
319
320
321
            pclient_list.append(p)
    for p in pclient_list:
        p.join()
    if keep_alive:
        for p in pserver_list:
            assert p.is_alive()
        # force shutdown server
        dgl.distributed.shutdown_servers("rpc_ip_config.txt", 1)
Jinjing Zhou's avatar
Jinjing Zhou committed
322
323
324
    for p in pserver_list:
        p.join()

325
def start_hetero_sample_client(rank, tmpdir, disable_shared_mem, nodes):
326
327
328
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
329
    dgl.distributed.initialize("rpc_ip_config.txt")
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
        sampled_graph = sample_neighbors(dist_graph, nodes, 3)
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

346
def start_hetero_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
347
348
                                     nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                     etype_sorted=False):
349
350
351
352
353
354
355
356
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['n1'].data
    assert 'feat' not in dist_graph.nodes['n2'].data
    assert 'feat' not in dist_graph.nodes['n3'].data
357
358
359
360
361
362
363
364
365
366
367

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

368
369
370
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    try:
371
        sampled_graph = sample_etype_neighbors(dist_graph, nodes, dgl.ETYPE, fanout, etype_sorted=etype_sorted)
372
373
374
375
376
377
378
379
        block = dgl.to_block(sampled_graph, nodes)
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    except Exception as e:
        print(e)
        block = None
    dgl.distributed.exit_client()
    return block, gpb

380
def check_rpc_hetero_sampling_shuffle(tmpdir, num_server):
381
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

    g = create_random_hetero()
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

398
399
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': [0, 10, 99, 66, 124, 208]})
400
401
402
403
    print("Done sampling")
    for p in pserver_list:
        p.join()

404
405
    orig_nid_map = {ntype: F.zeros((g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros((g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
406
407
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))
429
430

        # Check the node Ids and edge Ids.
431
432
433
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)
434

435
436
437
438
439
440
441
442
443
444
def get_degrees(g, nids, ntype):
    deg = F.zeros((len(nids),), dtype=F.int64)
    for srctype, etype, dsttype in g.canonical_etypes:
        if srctype == ntype:
            deg += g.out_degrees(u=nids, etype=etype)
        elif dsttype == ntype:
            deg += g.in_degrees(v=nids, etype=etype)
    return deg

def check_rpc_hetero_sampling_empty_shuffle(tmpdir, num_server):
445
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473

    g = create_random_hetero(empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_sample_client(0, tmpdir, num_server > 1,
                                            nodes = {'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

474
def check_rpc_hetero_etype_sampling_shuffle(tmpdir, num_server, etype_sorted=False):
475
476
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

477
478
479
480
481
482
483
484
485
486
    g = create_random_hetero(dense=True)
    num_parts = num_server
    num_hops = 1

    partition_graph(g, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
487
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling', ['csc', 'coo']))
488
489
490
491
492
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
493
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
494
495
                                                  nodes={'n3': [0, 10, 99, 66, 124, 208]},
                                                  etype_sorted=etype_sorted)
496
497
498
499
    print("Done sampling")
    for p in pserver_list:
        p.join()

500
    src, dst = block.edges(etype=('n1', 'r13', 'n3'))
501
    assert len(src) == 18
502
    src, dst = block.edges(etype=('n2', 'r23', 'n3'))
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    assert len(src) == 18

    orig_nid_map = {ntype: F.zeros((g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros((g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_sampling.json', i)
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

536
def check_rpc_hetero_etype_sampling_empty_shuffle(tmpdir, num_server):
537
538
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    g = create_random_hetero(dense=True, empty=True)
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis',
                                   reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['n3'], 'n3')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_hetero_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                  nodes={'n3': empty_nids})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

def create_random_bipartite():
    g = dgl.rand_bipartite('user', 'buys', 'game', 500, 1000, 1000)
    g.nodes['user'].data['feat'] = F.ones(
        (g.num_nodes('user'), 10), F.float32, F.cpu())
    g.nodes['game'].data['feat'] = F.ones(
        (g.num_nodes('game'), 10), F.float32, F.cpu())
    return g


def start_bipartite_sample_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data
    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_neighbors(dist_graph, nodes, 3)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def start_bipartite_etype_sample_client(rank, tmpdir, disable_shared_mem, fanout=3,
                                        nodes={}):
    gpb = None
    if disable_shared_mem:
        _, _, _, gpb, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', rank)
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", gpb=gpb)
    assert 'feat' in dist_graph.nodes['user'].data
    assert 'feat' in dist_graph.nodes['game'].data

    if dist_graph.local_partition is not None:
        # Check whether etypes are sorted in dist_graph
        local_g = dist_graph.local_partition
        local_nids = np.arange(local_g.num_nodes())
        for lnid in local_nids:
            leids = local_g.in_edges(lnid, form='eid')
            letids = F.asnumpy(local_g.edata[dgl.ETYPE][leids])
            _, idices = np.unique(letids, return_index=True)
            assert np.all(idices[:-1] <= idices[1:])

    if gpb is None:
        gpb = dist_graph.get_partition_book()
    sampled_graph = sample_etype_neighbors(
        dist_graph, nodes, dgl.ETYPE, fanout)
    block = dgl.to_block(sampled_graph, nodes)
    if sampled_graph.num_edges() > 0:
        block.edata[dgl.EID] = sampled_graph.edata[dgl.EID]
    dgl.distributed.exit_client()
    return block, gpb


def check_rpc_bipartite_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, _ = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                             nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_sample_client(0, tmpdir, num_server > 1,
                                               nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid_map = {ntype: F.zeros(
        (g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros(
        (g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', i)
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)


def check_rpc_bipartite_etype_sampling_empty(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    deg = get_degrees(g, orig_nids['game'], 'game')
    empty_nids = F.nonzero_1d(deg == 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1,
                                                     nodes={'game': empty_nids, 'user': [1]})

    print("Done sampling")
    for p in pserver_list:
        p.join()

    assert block is not None
    assert block.number_of_edges() == 0
    assert len(block.etypes) == len(g.etypes)


def check_rpc_bipartite_etype_sampling_shuffle(tmpdir, num_server):
    """sample on bipartite via sample_etype_neighbors() which yields non-empty sample results"""
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)

    g = create_random_bipartite()
    num_parts = num_server
    num_hops = 1

    orig_nids, _ = partition_graph(g, 'test_sampling', num_parts, tmpdir,
                                   num_hops=num_hops, part_method='metis', reshuffle=True, return_mapping=True)

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(
            i, tmpdir, num_server > 1, 'test_sampling'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    fanout = 3
    deg = get_degrees(g, orig_nids['game'], 'game')
    nids = F.nonzero_1d(deg > 0)
    block, gpb = start_bipartite_etype_sample_client(0, tmpdir, num_server > 1, fanout,
                                                     nodes={'game': nids, 'user': [0]})
    print("Done sampling")
    for p in pserver_list:
        p.join()

    orig_nid_map = {ntype: F.zeros(
        (g.number_of_nodes(ntype),), dtype=F.int64) for ntype in g.ntypes}
    orig_eid_map = {etype: F.zeros(
        (g.number_of_edges(etype),), dtype=F.int64) for etype in g.etypes}
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(
            tmpdir / 'test_sampling.json', i)
        ntype_ids, type_nids = gpb.map_to_per_ntype(part.ndata[dgl.NID])
        for ntype_id, ntype in enumerate(g.ntypes):
            idx = ntype_ids == ntype_id
            F.scatter_row_inplace(orig_nid_map[ntype], F.boolean_mask(type_nids, idx),
                                  F.boolean_mask(part.ndata['orig_id'], idx))
        etype_ids, type_eids = gpb.map_to_per_etype(part.edata[dgl.EID])
        for etype_id, etype in enumerate(g.etypes):
            idx = etype_ids == etype_id
            F.scatter_row_inplace(orig_eid_map[etype], F.boolean_mask(type_eids, idx),
                                  F.boolean_mask(part.edata['orig_id'], idx))

    for src_type, etype, dst_type in block.canonical_etypes:
        src, dst = block.edges(etype=etype)
        # These are global Ids after shuffling.
        shuffled_src = F.gather_row(
            block.srcnodes[src_type].data[dgl.NID], src)
        shuffled_dst = F.gather_row(
            block.dstnodes[dst_type].data[dgl.NID], dst)
        shuffled_eid = block.edges[etype].data[dgl.EID]

        orig_src = F.asnumpy(F.gather_row(
            orig_nid_map[src_type], shuffled_src))
        orig_dst = F.asnumpy(F.gather_row(
            orig_nid_map[dst_type], shuffled_dst))
        orig_eid = F.asnumpy(F.gather_row(orig_eid_map[etype], shuffled_eid))

        # Check the node Ids and edge Ids.
        orig_src1, orig_dst1 = g.find_edges(orig_eid, etype=etype)
        assert np.all(F.asnumpy(orig_src1) == orig_src)
        assert np.all(F.asnumpy(orig_dst1) == orig_dst)

Jinjing Zhou's avatar
Jinjing Zhou committed
829
830
831
# Wait non shared memory graph store
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
832
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
833
834
@pytest.mark.parametrize("num_server", [1, 2])
def test_rpc_sampling_shuffle(num_server):
835
    reset_envs()
Jinjing Zhou's avatar
Jinjing Zhou committed
836
    import tempfile
837
    os.environ['DGL_DIST_MODE'] = 'distributed'
Jinjing Zhou's avatar
Jinjing Zhou committed
838
    with tempfile.TemporaryDirectory() as tmpdirname:
839
        check_rpc_sampling_shuffle(Path(tmpdirname), num_server)
840
841
842
        # [TODO][Rhett] Tests for multiple groups may fail sometimes and
        # root cause is unknown. Let's disable them for now.
        #check_rpc_sampling_shuffle(Path(tmpdirname), num_server, num_groups=2)
843
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), num_server)
844
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), num_server)
845
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server)
846
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), num_server, etype_sorted=True)
847
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), num_server)
848
849
850
851
        check_rpc_bipartite_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_sampling_shuffle(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_empty(Path(tmpdirname), num_server)
        check_rpc_bipartite_etype_sampling_shuffle(Path(tmpdirname), num_server)
Jinjing Zhou's avatar
Jinjing Zhou committed
852

853
def check_standalone_sampling(tmpdir, reshuffle):
854
855
856
857
    g = CitationGraphDataset("cora")[0]
    num_parts = 1
    num_hops = 1
    partition_graph(g, 'test_sampling', num_parts, tmpdir,
858
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
859

860
    os.environ['DGL_DIST_MODE'] = 'standalone'
861
    dgl.distributed.initialize("rpc_ip_config.txt")
862
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
863
864
865
866
867
868
869
870
    sampled_graph = sample_neighbors(dist_graph, [0, 10, 99, 66, 1024, 2008], 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))
    eids = g.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
871
    dgl.distributed.exit_client()
872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
def check_standalone_etype_sampling(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1

    partition_graph(hg, 'test_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_sampling", part_config=tmpdir / 'test_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 10, 99, 66, 1023], dgl.ETYPE, 3)

    src, dst = sampled_graph.edges()
    assert sampled_graph.number_of_nodes() == hg.number_of_nodes()
    assert np.all(F.asnumpy(hg.has_edges_between(src, dst)))
    eids = hg.edge_ids(src, dst)
    assert np.array_equal(
        F.asnumpy(sampled_graph.edata[dgl.EID]), F.asnumpy(eids))
    dgl.distributed.exit_client()

def check_standalone_etype_sampling_heterograph(tmpdir, reshuffle):
    hg = CitationGraphDataset('cora')[0]
    num_parts = 1
    num_hops = 1
    src, dst = hg.edges()
    new_hg = dgl.heterograph({('paper', 'cite', 'paper'): (src, dst),
                              ('paper', 'cite-by', 'paper'): (dst, src)},
                              {'paper': hg.number_of_nodes()})
    partition_graph(new_hg, 'test_hetero_sampling', num_parts, tmpdir,
                    num_hops=num_hops, part_method='metis', reshuffle=reshuffle)
    os.environ['DGL_DIST_MODE'] = 'standalone'
    dgl.distributed.initialize("rpc_ip_config.txt")
    dist_graph = DistGraph("test_hetero_sampling", part_config=tmpdir / 'test_hetero_sampling.json')
    sampled_graph = sample_etype_neighbors(dist_graph, [0, 1, 2, 10, 99, 66, 1023, 1024, 2700, 2701], dgl.ETYPE, 1)
    src, dst = sampled_graph.edges(etype=('paper', 'cite', 'paper'))
    assert len(src) == 10
    src, dst = sampled_graph.edges(etype=('paper', 'cite-by', 'paper'))
    assert len(src) == 10
    assert sampled_graph.number_of_nodes() == new_hg.number_of_nodes()
    dgl.distributed.exit_client()

914
915
916
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_standalone_sampling():
917
    reset_envs()
918
919
920
    import tempfile
    os.environ['DGL_DIST_MODE'] = 'standalone'
    with tempfile.TemporaryDirectory() as tmpdirname:
921
922
        check_standalone_sampling(Path(tmpdirname), False)
        check_standalone_sampling(Path(tmpdirname), True)
923

924
925
def start_in_subgraph_client(rank, tmpdir, disable_shared_mem, nodes):
    gpb = None
926
    dgl.distributed.initialize("rpc_ip_config.txt")
927
    if disable_shared_mem:
928
        _, _, _, gpb, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', rank)
929
    dist_graph = DistGraph("test_in_subgraph", gpb=gpb)
930
931
932
933
934
    try:
        sampled_graph = dgl.distributed.in_subgraph(dist_graph, nodes)
    except Exception as e:
        print(e)
        sampled_graph = None
935
    dgl.distributed.exit_client()
936
937
938
    return sampled_graph


939
def check_rpc_in_subgraph_shuffle(tmpdir, num_server):
940
    generate_ip_config("rpc_ip_config.txt", num_server, num_server)
941
942
943
944
945
946

    g = CitationGraphDataset("cora")[0]
    g.readonly()
    num_parts = num_server

    partition_graph(g, 'test_in_subgraph', num_parts, tmpdir,
947
                    num_hops=1, part_method='metis', reshuffle=True)
948
949
950
951
952
953
954
955
956
957
958
959
960
961

    pserver_list = []
    ctx = mp.get_context('spawn')
    for i in range(num_server):
        p = ctx.Process(target=start_server, args=(i, tmpdir, num_server > 1, 'test_in_subgraph'))
        p.start()
        time.sleep(1)
        pserver_list.append(p)

    nodes = [0, 10, 99, 66, 1024, 2008]
    sampled_graph = start_in_subgraph_client(0, tmpdir, num_server > 1, nodes)
    for p in pserver_list:
        p.join()

962

963
964
    orig_nid = F.zeros((g.number_of_nodes(),), dtype=F.int64, ctx=F.cpu())
    orig_eid = F.zeros((g.number_of_edges(),), dtype=F.int64, ctx=F.cpu())
965
966
967
968
969
    for i in range(num_server):
        part, _, _, _, _, _, _ = load_partition(tmpdir / 'test_in_subgraph.json', i)
        orig_nid[part.ndata[dgl.NID]] = part.ndata['orig_id']
        orig_eid[part.edata[dgl.EID]] = part.edata['orig_id']

970
    src, dst = sampled_graph.edges()
971
972
    src = orig_nid[src]
    dst = orig_nid[dst]
973
    assert sampled_graph.number_of_nodes() == g.number_of_nodes()
974
975
976
    assert np.all(F.asnumpy(g.has_edges_between(src, dst)))

    subg1 = dgl.in_subgraph(g, orig_nid[nodes])
977
978
979
980
    src1, dst1 = subg1.edges()
    assert np.all(np.sort(F.asnumpy(src)) == np.sort(F.asnumpy(src1)))
    assert np.all(np.sort(F.asnumpy(dst)) == np.sort(F.asnumpy(dst1)))
    eids = g.edge_ids(src, dst)
981
982
    eids1 = orig_eid[sampled_graph.edata[dgl.EID]]
    assert np.array_equal(F.asnumpy(eids1), F.asnumpy(eids))
983
984
985
986

@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
def test_rpc_in_subgraph():
987
    reset_envs()
988
    import tempfile
989
    os.environ['DGL_DIST_MODE'] = 'distributed'
990
    with tempfile.TemporaryDirectory() as tmpdirname:
991
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
992

993
994
995
996
@unittest.skipIf(os.name == 'nt', reason='Do not support windows yet')
@unittest.skipIf(dgl.backend.backend_name == 'tensorflow', reason='Not support tensorflow for now')
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="Turn off Mxnet support")
def test_standalone_etype_sampling():
997
    reset_envs()
998
999
1000
1001
1002
1003
1004
1005
1006
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)

Jinjing Zhou's avatar
Jinjing Zhou committed
1007
1008
1009
if __name__ == "__main__":
    import tempfile
    with tempfile.TemporaryDirectory() as tmpdirname:
1010
        os.environ['DGL_DIST_MODE'] = 'standalone'
1011
1012
1013
1014
1015
1016
        check_standalone_etype_sampling_heterograph(Path(tmpdirname), True)

    with tempfile.TemporaryDirectory() as tmpdirname:
        os.environ['DGL_DIST_MODE'] = 'standalone'
        check_standalone_etype_sampling(Path(tmpdirname), True)
        check_standalone_etype_sampling(Path(tmpdirname), False)
1017
1018
        check_standalone_sampling(Path(tmpdirname), True)
        check_standalone_sampling(Path(tmpdirname), False)
1019
        os.environ['DGL_DIST_MODE'] = 'distributed'
1020
1021
        check_rpc_sampling(Path(tmpdirname), 2)
        check_rpc_sampling(Path(tmpdirname), 1)
1022
1023
        check_rpc_get_degree_shuffle(Path(tmpdirname), 1)
        check_rpc_get_degree_shuffle(Path(tmpdirname), 2)
1024
1025
        check_rpc_find_edges_shuffle(Path(tmpdirname), 2)
        check_rpc_find_edges_shuffle(Path(tmpdirname), 1)
1026
1027
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_find_edges_shuffle(Path(tmpdirname), 2)
1028
1029
1030
1031
        check_rpc_in_subgraph_shuffle(Path(tmpdirname), 2)
        check_rpc_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_sampling_shuffle(Path(tmpdirname), 2)
1032
1033
1034
1035
        check_rpc_hetero_sampling_empty_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 1)
        check_rpc_hetero_etype_sampling_shuffle(Path(tmpdirname), 2)
        check_rpc_hetero_etype_sampling_empty_shuffle(Path(tmpdirname), 1)