"vscode:/vscode.git/clone" did not exist on "8a0434d2a39f48c1dbc52a9dcfa6a9dfa43a574f"
README.md 32 KB
Newer Older
1
2
# Official DGL Examples and Modules

Minjie Wang's avatar
Minjie Wang committed
3
4
5
6
The folder contains example implementations of selected research papers related to Graph Neural Networks. Note that the examples may not work with incompatible DGL versions.
* For examples working with the latest master (or the latest [nightly build](https://www.dgl.ai/pages/start.html)), check out https://github.com/dmlc/dgl/tree/master/examples.
* For examples working with a certain release, check out `https://github.com/dmlc/dgl/tree/<release_version>/examples` (E.g., https://github.com/dmlc/dgl/tree/0.5.x/examples)

7
To quickly locate the examples of your interest, search for the tagged keywords or use the search tool on [dgl.ai](https://www.dgl.ai/).
xnouhz's avatar
xnouhz committed
8

9
10
## 2021

11
12
13
- <a name="hilander"></a> Xing et al. Learning Hierarchical Graph Neural Networks for Image Clustering.
    - Example code: [PyTorch](../examples/pytorch/hilander)
    - Tags: clustering
14
15
16
- <a name="bgnn"></a> Ivanov et al. Boost then Convolve: Gradient Boosting Meets Graph Neural Networks. [Paper link](https://openreview.net/forum?id=ebS5NUfoMKL). 
    - Example code: [PyTorch](../examples/pytorch/bgnn)
    - Tags: semi-supervised node classification, tabular data, GBDT
17
18
19
- <a name="correct_and_smooth"></a> Huang et al. Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. [Paper link](https://arxiv.org/abs/2010.13993). 
    - Example code: [PyTorch](../examples/pytorch/correct_and_smooth)
    - Tags: efficiency, node classification, label propagation
esang's avatar
esang committed
20
21
22
23
- <a name="point_transformer"></a> Zhao et al. Point Transformer. [Paper link](http://arxiv.org/abs/2012.09164).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/point_transformer)
    - Tags: point cloud classification, point cloud part-segmentation

24

25
## 2020
26
27
28
- <a name="eeg-gcnn"></a> Wagh et al. EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease Diagnosis using a Domain-guided Graph Convolutional Neural Network. [Paper link](http://proceedings.mlr.press/v136/wagh20a.html). 
    - Example code: [PyTorch](../examples/pytorch/eeg-gcnn)
    - Tags: graph classification, eeg representation learning, brain activity, graph convolution,  neurological disease classification, large dataset, edge weights, node features, fully-connected graph, graph neural network
29
30
- <a name="rect"></a> Wang et al. Network Embedding with Completely-imbalanced Labels. [Paper link](https://ieeexplore.ieee.org/document/8979355). 
    - Example code: [PyTorch](../examples/pytorch/rect)
Jinjing Zhou's avatar
Jinjing Zhou committed
31
    - Tags: node classification, network embedding, completely-imbalanced labels
32
33
- <a name="mvgrl"></a> Hassani and Khasahmadi. Contrastive Multi-View Representation Learning on Graphs. [Paper link](https://arxiv.org/abs/2006.05582). 
    - Example code: [PyTorch](../examples/pytorch/mvgrl)
Jinjing Zhou's avatar
Jinjing Zhou committed
34
    - Tags: graph diffusion, self-supervised learning
35
36
37
- <a name="grace"></a> Zhu et al. Deep Graph Contrastive Representation Learning. [Paper link](https://arxiv.org/abs/2006.04131). 
    - Example code: [PyTorch](../examples/pytorch/grace)
    - Tags: contrastive learning for node classification.
38
39
40
- <a name="grand"></a> Feng et al. Graph Random Neural Network for Semi-Supervised Learning on Graphs. [Paper link](https://arxiv.org/abs/2005.11079). 
    - Example code: [PyTorch](../examples/pytorch/grand)
    - Tags: semi-supervised node classification, simplifying graph convolution, data augmentation
41
42
- <a name="hgt"></a> Hu et al. Heterogeneous Graph Transformer. [Paper link](https://arxiv.org/abs/2003.01332).
    - Example code: [PyTorch](../examples/pytorch/hgt)
Jinjing Zhou's avatar
Jinjing Zhou committed
43
    - Tags: dynamic heterogeneous graph, large-scale, node classification, link prediction
44
45
46
47
48
- <a name="mwe"></a> Chen. Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges. [Paper link](https://cims.nyu.edu/~chenzh/files/GCN_with_edge_weights.pdf).
    - Example code: [PyTorch on ogbn-proteins](../examples/pytorch/ogb/ogbn-proteins)
    - Tags: node classification, weighted graphs, OGB
- <a name="sign"></a> Frasca et al. SIGN: Scalable Inception Graph Neural Networks. [Paper link](https://arxiv.org/abs/2004.11198).
    - Example code: [PyTorch on ogbn-arxiv/products/mag](../examples/pytorch/ogb/sign), [PyTorch](../examples/pytorch/sign)
Jinjing Zhou's avatar
Jinjing Zhou committed
49
    - Tags: node classification, OGB, large-scale, heterogeneous graph
50
51
52
- <a name="prestrategy"></a> Hu et al. Strategies for Pre-training Graph Neural Networks. [Paper link](https://arxiv.org/abs/1905.12265).
    - Example code: [Molecule embedding](https://github.com/awslabs/dgl-lifesci/tree/master/examples/molecule_embeddings), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, graph classification, unsupervised learning, self-supervised learning, molecular property prediction
53
- <a name="gnnfilm"></a> Marc Brockschmidt. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation. [Paper link](https://arxiv.org/abs/1906.12192).
54
    - Example code: [PyTorch](../examples/pytorch/GNN-FiLM)
KounianhuaDu's avatar
KounianhuaDu committed
55
    - Tags: multi-relational graphs, hypernetworks, GNN architectures
56
- <a name="gxn"></a> Li, Maosen, et al. Graph Cross Networks with Vertex Infomax Pooling. [Paper link](https://arxiv.org/abs/2010.01804).
57
    - Example code: [PyTorch](../examples/pytorch/gxn)
58
    - Tags: pooling, graph classification
lt610's avatar
lt610 committed
59
- <a name="dagnn"></a> Liu et al. Towards Deeper Graph Neural Networks. [Paper link](https://arxiv.org/abs/2007.09296).
60
    - Example code: [PyTorch](../examples/pytorch/dagnn)
lt610's avatar
lt610 committed
61
    - Tags: over-smoothing, node classification
62
63
64
- <a name="dimenet"></a> Klicpera et al. Directional Message Passing for Molecular Graphs. [Paper link](https://arxiv.org/abs/2003.03123).
    - Example code: [PyTorch](../examples/pytorch/dimenet)
    - Tags: molecules, molecular property prediction, quantum chemistry
65
66
- <a name="tgn"></a> Rossi et al. Temporal Graph Networks For Deep Learning on Dynamic Graphs. [Paper link](https://arxiv.org/abs/2006.10637).
    - Example code: [Pytorch](../examples/pytorch/tgn)
67
    - Tags: temporal, node classification 
KounianhuaDu's avatar
KounianhuaDu committed
68
- <a name="compgcn"></a> Vashishth, Shikhar, et al. Composition-based Multi-Relational Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1911.03082).
xnouhz's avatar
xnouhz committed
69
    - Example code: [PyTorch](../examples/pytorch/compGCN)
KounianhuaDu's avatar
KounianhuaDu committed
70
    - Tags: multi-relational graphs, graph neural network
xnouhz's avatar
xnouhz committed
71
72
73
74
- <a name="deepergcn"></a> Li et al. DeeperGCN: All You Need to Train Deeper GCNs. [Paper link](https://arxiv.org/abs/2006.07739).
    - Example code: [PyTorch](../examples/pytorch/deepergcn)
    - Tags: over-smoothing, deeper gnn, OGB

KounianhuaDu's avatar
KounianhuaDu committed
75
76
77
- <a name="tahin"></a> Bi, Ye, et al. A Heterogeneous Information Network based Cross DomainInsurance Recommendation System for Cold Start Users. [Paper link](https://arxiv.org/abs/2007.15293).
    - Example code: [Pytorch](../examples/pytorch/TAHIN)
    - Tags: cross-domain recommendation, graph neural network
78
79
80
81
82
83
- <a name="magnn"></a> Fu X, Zhang J, Meng Z, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. [Paper link](https://dl.acm.org/doi/abs/10.1145/3366423.3380297).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/MAGNN)
    - Tags: Heterogeneous graph, Graph neural network, Graph embedding
- <a name="nshe"></a> Zhao J, Wang X, et al. Network Schema Preserving Heterogeneous Information Network Embedding. [Paper link](https://www.ijcai.org/Proceedings/2020/0190.pdf).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/NSHE)
    - Tags: Heterogeneous graph, Graph neural network, Graph embedding, Network Schema
84
85
86
- <a name="caregnn"></a> Dou Y, Liu Z, et al. Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters. [Paper link](https://arxiv.org/abs/2008.08692).
    - Example code: [PyTorch](../examples/pytorch/caregnn)
    - Tags: Multi-relational graph, Graph neural network, Fraud detection, Reinforcement learning, Node classification
KounianhuaDu's avatar
KounianhuaDu committed
87

88
89
## 2019

90
91
92
- <a name="infograph"></a> Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. [Paper link](https://arxiv.org/abs/1908.01000). 
    - Example code: [PyTorch](../examples/pytorch/infograph)
    - Tags: semi-supervised graph regression, unsupervised graph classification
93
94
95
- <a name="arma"></a>  Bianchi et al. Graph Neural Networks with Convolutional ARMA Filters. [Paper link](https://arxiv.org/abs/1901.01343).
    - Example code: [PyTorch](../examples/pytorch/arma)
    - Tags: node classification
96
97
98
99
100
101
102
103
104
105
106
107
108
109
- <a name="appnp"></a> Klicpera et al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. [Paper link](https://arxiv.org/abs/1810.05997).
    - Example code: [PyTorch](../examples/pytorch/appnp), [MXNet](../examples/mxnet/appnp)
    - Tags: node classification
- <a name="clustergcn"></a> Chiang et al. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1905.07953).
    - Example code: [PyTorch](../examples/pytorch/cluster_gcn), [PyTorch-based GraphSAGE variant on OGB](../examples/pytorch/ogb/cluster-sage), [PyTorch-based GAT variant on OGB](../examples/pytorch/ogb/cluster-gat)
    - Tags: graph partition, node classification, large-scale, OGB, sampling
- <a name="dgi"></a> Veličković et al. Deep Graph Infomax. [Paper link](https://arxiv.org/abs/1809.10341).
    - Example code: [PyTorch](../examples/pytorch/dgi), [TensorFlow](../examples/tensorflow/dgi)
    - Tags: unsupervised learning, node classification
- <a name="diffpool"></a> Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling. [Paper link](https://arxiv.org/abs/1806.08804).
    - Example code: [PyTorch](../examples/pytorch/diffpool)
    - Tags: pooling, graph classification, graph coarsening
- <a name="gatne-t"></a> Cen et al. Representation Learning for Attributed Multiplex Heterogeneous Network. [Paper link](https://arxiv.org/abs/1905.01669v2).
    - Example code: [PyTorch](../examples/pytorch/GATNE-T)
Jinjing Zhou's avatar
Jinjing Zhou committed
110
    - Tags: heterogeneous graph, link prediction, large-scale
111
112
113
114
115
116
117
- <a name="gin"></a> Xu et al. How Powerful are Graph Neural Networks? [Paper link](https://arxiv.org/abs/1810.00826).
    - Example code: [PyTorch on graph classification](../examples/pytorch/gin), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [MXNet](../examples/mxnet/gin)
    - Tags: graph classification, node classification, OGB
- <a name="graphwriter"></a> Koncel-Kedziorski et al. Text Generation from Knowledge Graphs with Graph Transformers. [Paper link](https://arxiv.org/abs/1904.02342).
    - Example code: [PyTorch](../examples/pytorch/graphwriter)
    - Tags: knowledge graph, text generation
- <a name="han"></a> Wang et al. Heterogeneous Graph Attention Network. [Paper link](https://arxiv.org/abs/1903.07293).
118
    - Example code: [PyTorch](../examples/pytorch/han), [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HAN)
Jinjing Zhou's avatar
Jinjing Zhou committed
119
    - Tags: heterogeneous graph, node classification
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
- <a name="lgnn"></a> Chen et al. Supervised Community Detection with Line Graph Neural Networks. [Paper link](https://arxiv.org/abs/1705.08415).
    - Example code: [PyTorch](../examples/pytorch/line_graph)
    - Tags: line graph, community detection
- <a name="sgc"></a> Wu et al. Simplifying Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1902.07153).
    - Example code: [PyTorch](../examples/pytorch/sgc), [MXNet](../examples/mxnet/sgc)
    - Tags: node classification
- <a name="dgcnnpoint"></a> Wang et al. Dynamic Graph CNN for Learning on Point Clouds. [Paper link](https://arxiv.org/abs/1801.07829).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/edgeconv)
    - Tags: point cloud classification
- <a name="scenegraph"></a> Zhang et al. Graphical Contrastive Losses for Scene Graph Parsing. [Paper link](https://arxiv.org/abs/1903.02728).
    - Example code: [MXNet](../examples/mxnet/scenegraph)
    - Tags: scene graph extraction
- <a name="settrans"></a> Lee et al. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. [Paper link](https://arxiv.org/abs/1810.00825).
    - Pooling module: [PyTorch encoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerencoder), [PyTorch decoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerdecoder)
    - Tags: graph classification
- <a name="wln"></a> Coley et al. A graph-convolutional neural network model for the prediction of chemical reactivity. [Paper link](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/reaction_prediction/rexgen_direct)
    - Tags: molecules, reaction prediction
- <a name="mgcn"></a> Lu et al. Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. [Paper link](https://arxiv.org/abs/1906.11081).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy)
    - Tags: molecules, quantum chemistry
- <a name="attentivefp"></a> Xiong et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. [Paper link](https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00959).
    - Example code: [PyTorch (with attention visualization)](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/pubchem_aromaticity), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, molecular property prediction
- <a name="rotate"></a> Sun et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. [Paper link](https://arxiv.org/pdf/1902.10197.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
146
    - Tags: knowledge graph
147
148
149
- <a name="mixhop"></a> Abu-El-Haija et al. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. [Paper link](https://arxiv.org/abs/1905.00067).
    - Example code: [PyTorch](../examples/pytorch/mixhop)
    - Tags: node classification
150
151
152
- <a name="sagpool"></a> Lee, Junhyun, et al. Self-Attention Graph Pooling. [Paper link](https://arxiv.org/abs/1904.08082).
    - Example code: [PyTorch](../examples/pytorch/sagpool)
    - Tags: graph classification, pooling
153
154
155
- <a name="hgp-sl"></a> Zhang, Zhen, et al. Hierarchical Graph Pooling with Structure Learning. [Paper link](https://arxiv.org/abs/1911.05954).
    - Example code: [PyTorch](../examples/pytorch/hgp_sl)
    - Tags: graph classification, pooling
156
- <a name='hardgat'></a> Gao, Hongyang, et al. Graph Representation Learning via Hard and Channel-Wise Attention Networks [Paper link](https://arxiv.org/abs/1907.04652).
157
    - Example code: [PyTorch](../examples/pytorch/hardgat)
158
    - Tags: node classification, graph attention
159
- <a name='ngcf'></a> Wang, Xiang, et al. Neural Graph Collaborative Filtering. [Paper link](https://arxiv.org/abs/1905.08108).
160
    - Example code: [PyTorch](../examples/pytorch/NGCF)
Jinjing Zhou's avatar
Jinjing Zhou committed
161
    - Tags: Collaborative Filtering, recommender system, Graph Neural Network 
KounianhuaDu's avatar
KounianhuaDu committed
162
163
164
- <a name='gnnexplainer'></a> Ying, Rex, et al. GNNExplainer: Generating Explanations for Graph Neural Networks. [Paper link](https://arxiv.org/abs/1903.03894).
    - Example code: [PyTorch](../examples/pytorch/gnn_explainer)
    - Tags: Graph Neural Network, Explainability
165
166
- <a name='hetgnn'></a> Zhang C, Song D, et al. Heterogeneous graph neural network. [Paper link](https://dl.acm.org/doi/abs/10.1145/3292500.3330961).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HetGNN)
Jinjing Zhou's avatar
Jinjing Zhou committed
167
    - Tags:  Heterogeneous graph, Graph neural network, Graph embedding
168
169
- <a name='gtn'></a> Yun S, Jeong M, et al. Graph transformer networks. [Paper link](https://arxiv.org/abs/1911.06455).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/GTN)
Jinjing Zhou's avatar
Jinjing Zhou committed
170
    - Tags:  Heterogeneous graph, Graph neural network, Graph structure
171
172
173
- <a name='gas'></a> Li A, Qin Z, et al. Spam Review Detection with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1908.10679).
    - Example code: [PyTorch](../examples/pytorch/gas)
    - Tags:  Fraud detection, Heterogeneous graph, Edge classification, Graph attention
174
175
176
- <a name='geniepath'></a> Liu Z, et al. Geniepath: Graph neural networks with adaptive receptive paths. [Paper link](https://arxiv.org/abs/1802.00910).
    - Example code: [PyTorch](../examples/pytorch/geniepath)
    - Tags:  Fraud detection, Node classification, Graph attention, LSTM, Adaptive receptive fields
177

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
## 2018

- <a name="dgmg"></a> Li et al. Learning Deep Generative Models of Graphs. [Paper link](https://arxiv.org/abs/1803.03324).
    - Example code: [PyTorch example for cycles](../examples/pytorch/dgmg), [PyTorch example for molecules](https://github.com/awslabs/dgl-lifesci/tree/master/examples/generative_models/dgmg)
    - Tags: generative models, autoregressive models, molecules

- <a name="gat"></a> Veličković et al. Graph Attention Networks. [Paper link](https://arxiv.org/abs/1710.10903).
    - Example code: [PyTorch](../examples/pytorch/gat), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [TensorFlow](../examples/tensorflow/gat), [MXNet](../examples/mxnet/gat)
    - Tags: node classification, OGB

- <a name="jtvae"></a> Jin et al. Junction Tree Variational Autoencoder for Molecular Graph Generation. [Paper link](https://arxiv.org/abs/1802.04364).
    - Example code: [PyTorch](../examples/pytorch/jtnn)
    - Tags: generative models, molecules, VAE

- <a name="agnn"></a> Thekumparampil et al. Attention-based Graph Neural Network for Semi-supervised Learning. [Paper link](https://arxiv.org/abs/1803.03735).
    - Example code: [PyTorch](../examples/pytorch/model_zoo/citation_network)
    - Tags: node classification
    
- <a name="pinsage"></a> Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. [Paper link](https://arxiv.org/abs/1806.01973).
    - Example code: [PyTorch](../examples/pytorch/pinsage)
    - Tags: recommender system, large-scale, sampling

- <a name="rrn"></a> Berg Palm et al. Recurrent Relational Networks. [Paper link](https://arxiv.org/abs/1711.08028).
    - Example code: [PyTorch](../examples/pytorch/rrn)
    - Tags: sudoku solving

- <a name="stgcn"></a> Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. [Paper link](https://arxiv.org/abs/1709.04875v4).
    - Example code: [PyTorch](../examples/pytorch/stgcn_wave)
    - Tags: spatio-temporal, traffic forecasting

- <a name="dgcnn"></a> Zhang et al. An End-to-End Deep Learning Architecture for Graph Classification. [Paper link](https://www.cse.wustl.edu/~ychen/public/DGCNN.pdf).
    - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#sortpooling), [TensorFlow](https://docs.dgl.ai/api/python/nn.tensorflow.html#sortpooling), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#sortpooling)
    - Tags: graph classification

Smile's avatar
Smile committed
212
- <a name="seal"></a>  Zhang et al. Link Prediction Based on Graph Neural Networks. [Paper link](https://papers.nips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf).
xnouhz's avatar
xnouhz committed
213
    - Example code: [PyTorch](../examples/pytorch/seal)
Smile's avatar
Smile committed
214
215
    - Tags: link prediction, sampling

xnouhz's avatar
xnouhz committed
216
- <a name="jknet"></a>  Xu et al. Representation Learning on Graphs with Jumping Knowledge Networks. [Paper link](https://arxiv.org/abs/1806.03536).
xnouhz's avatar
xnouhz committed
217
    - Example code: [PyTorch](../examples/pytorch/jknet)
xnouhz's avatar
xnouhz committed
218
219
    - Tags: message passing, neighborhood

Chen Sirui's avatar
Chen Sirui committed
220
221
- <a name="gaan"></a> Zhang et al. GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. [Paper link](https://arxiv.org/abs/1803.07294).
    - Example code: [pytorch](../examples/pytorch/dtgrnn)
Jinjing Zhou's avatar
Jinjing Zhou committed
222
    - Tags: Static discrete temporal graph, traffic forecasting
Smile's avatar
Smile committed
223

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
## 2017

- <a name="gcn"></a> Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1609.02907). 
    - Example code: [PyTorch](../examples/pytorch/gcn), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [TensorFlow](../examples/tensorflow/gcn), [MXNet](../examples/mxnet/gcn)
    - Tags: node classification, link prediction, graph classification, OGB

- <a name="capsule"></a> Sabour et al. Dynamic Routing Between Capsules. [Paper link](https://arxiv.org/abs/1710.09829).
    - Example code: [PyTorch](../examples/pytorch/capsule)
    - Tags: image classification
  
- <a name="gcmc"></a> van den Berg et al. Graph Convolutional Matrix Completion. [Paper link](https://arxiv.org/abs/1706.02263).
    - Example code: [PyTorch](../examples/pytorch/gcmc)
    - Tags: matrix completion, recommender system, link prediction, bipartite graphs

- <a name="graphsage"></a> Hamilton et al. Inductive Representation Learning on Large Graphs. [Paper link](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf).
    - Example code: [PyTorch](../examples/pytorch/graphsage), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [MXNet](../examples/mxnet/graphsage)
    - Tags: node classification, sampling, unsupervised learning, link prediction, OGB

- <a name="metapath2vec"></a> Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. [Paper link](https://dl.acm.org/doi/10.1145/3097983.3098036).
    - Example code: [PyTorch](../examples/pytorch/metapath2vec)
Jinjing Zhou's avatar
Jinjing Zhou committed
244
    - Tags: heterogeneous graph, network embedding, large-scale, node classification
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

- <a name="tagcn"></a> Du et al. Topology Adaptive Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1710.10370).
    - Example code: [PyTorch](../examples/pytorch/tagcn), [MXNet](../examples/mxnet/tagcn)
    - Tags: node classification
    
- <a name="pointnet"></a> Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [Paper link](https://arxiv.org/abs/1612.00593).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet)
    - Tags: point cloud classification, point cloud part-segmentation

- <a name="pointnet++"></a> Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. [Paper link](https://arxiv.org/abs/1706.02413).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet)
    - Tags: point cloud classification
    
- <a name="rgcn"></a> Schlichtkrull. Modeling Relational Data with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1703.06103).
    - Example code: [PyTorch example using homogeneous DGLGraphs](../examples/pytorch/rgcn), [PyTorch](../examples/pytorch/rgcn-hetero), [TensorFlow](../examples/tensorflow/rgcn), [MXNet](../examples/mxnet/rgcn)
Jinjing Zhou's avatar
Jinjing Zhou committed
260
    - Tags: node classification, link prediction, heterogeneous graph, sampling
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

- <a name="transformer"></a> Vaswani et al. Attention Is All You Need. [Paper link](https://arxiv.org/abs/1706.03762).
    - Example code: [PyTorch](../examples/pytorch/transformer)
    - Tags: machine translation

- <a name="mpnn"></a> Gilmer et al. Neural Message Passing for Quantum Chemistry. [Paper link](https://arxiv.org/abs/1704.01212).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, quantum chemistry

- <a name="acnn"></a> Gomes et al. Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity. [Paper link](https://arxiv.org/abs/1703.10603).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/binding_affinity_prediction)
    - Tags: binding affinity prediction, molecules, proteins

- <a name="schnet"></a> Schütt et al. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. [Paper link](https://arxiv.org/abs/1706.08566).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy)
    - Tags: molecules, quantum chemistry

Chen Sirui's avatar
Chen Sirui committed
278
279
- <a name="dcrnn"></a> Li et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forcasting. [Paper link](https://arxiv.org/abs/1707.01926).
    - Example code: [Pytorch](../examples/pytorch/dtgrnn)
Jinjing Zhou's avatar
Jinjing Zhou committed
280
    - Tags: Static discrete temporal graph, traffic forecasting
Chen Sirui's avatar
Chen Sirui committed
281

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
## 2016

- <a name="ggnn"></a> Li et al. Gated Graph Sequence Neural Networks. [Paper link](https://arxiv.org/abs/1511.05493).
    - Example code: [PyTorch](../examples/pytorch/ggnn)
    - Tags: question answering
- <a name="chebnet"></a> Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. [Paper link](https://arxiv.org/abs/1606.09375).
    - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network)
    - Tags: image classification, graph classification, node classification
- <a name="monet"></a> Monti et al. Geometric deep learning on graphs and manifolds using mixture model CNNs. [Paper link](https://arxiv.org/abs/1611.08402).
    - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/monet), [MXNet on node classification](../examples/mxnet/monet)
    - Tags: image classification, graph classification, node classification
- <a name="weave"></a> Kearnes et al. Molecular Graph Convolutions: Moving Beyond Fingerprints. [Paper link](https://arxiv.org/abs/1603.00856).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecular property prediction
- <a name="complex"></a> Trouillon et al. Complex Embeddings for Simple Link Prediction. [Paper link](http://proceedings.mlr.press/v48/trouillon16.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
298
    - Tags: knowledge graph
299
300
301
- <a name="vgae"></a> Thomas et al. Variational Graph Auto-Encoders. [Paper link](https://arxiv.org/abs/1611.07308).
    - Example code: [PyTorch](../examples/pytorch/vgae)
    - Tags: link prediction
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

## 2015

- <a name="line"></a> Tang et al. LINE: Large-scale Information Network Embedding. [Paper link](https://arxiv.org/abs/1503.03578).
    - Example code: [PyTorch on OGB](../examples/pytorch/ogb/line)
    - Tags: network embedding, transductive learning, OGB, link prediction

- <a name="treelstm"></a> Sheng Tai et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. [Paper link](https://arxiv.org/abs/1503.00075).
    - Example code: [PyTorch](../examples/pytorch/tree_lstm), [MXNet](../examples/mxnet/tree_lstm)
    - Tags: sentiment classification
    
- <a name="seq2seq"></a> Vinyals et al. Order Matters: Sequence to sequence for sets. [Paper link](https://arxiv.org/abs/1511.06391).
    - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#set2set), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#set2set)
    - Tags: graph classification
    
- <a name="transr"></a> Lin et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion. [Paper link](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9571).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
319
    - Tags: knowledge graph
320
321
322

- <a name="distmul"></a> Yang et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. [Paper link](https://arxiv.org/abs/1412.6575).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
323
    - Tags: knowledge graph
324

Mufei Li's avatar
Mufei Li committed
325
326
327
328
- <a name="nf"></a> Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints. [Paper link](https://arxiv.org/abs/1509.09292).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, molecular property prediction

329
330
331
332
333
334
335
336
337
338
339
340
341
342
## 2014

- <a name="deepwalk"></a> Perozzi et al. DeepWalk: Online Learning of Social Representations. [Paper link](https://arxiv.org/abs/1403.6652).
    - Example code: [PyTorch on OGB](../examples/pytorch/ogb/deepwalk)
    - Tags: network embedding, transductive learning, OGB, link prediction

- <a name="hausdorff"></a> Fischer et al. A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/978-3-662-44415-3_9).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

## 2013

- <a name="transe"></a> Bordes et al. Translating Embeddings for Modeling Multi-relational Data. [Paper link](https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
343
    - Tags: knowledge graph
344
345
346
347
348
349
350
351
352

## 2011

- <a name="bipartite"></a> Fankhauser et al. Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching. [Paper link](https://link.springer.com/chapter/10.1007/978-3-642-20844-7_11).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

- <a name="rescal"></a> Nickel et al. A Three-Way Model for Collective Learning on Multi-Relational Data. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2015&rep=rep1&type=pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
Jinjing Zhou's avatar
Jinjing Zhou committed
353
    - Tags: knowledge graph
354

355
356
357
358
359
360
## 2010

- <a name="lda"></a> Hoffman et al. Online Learning for Latent Dirichlet Allocation. [Paper link](https://papers.nips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf).
    - Example code: [PyTorch](../examples/pytorch/lda)
    - Tags: sklearn, decomposition, latent Dirichlet allocation

361
362
363
364
365
366
367
368
369
370
371
372
## 2009

- <a name="astar"></a> Riesen et al. Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic. [Paper link](https://core.ac.uk/download/pdf/33054885.pdf).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

## 2006

- <a name="beam"></a> Neuhaus et al. Fast Suboptimal Algorithms for the Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/11815921_17).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

373
374
375
376
377
378
## 2002

- <a name="label_propagation"></a> Zhu & Ghahramani. Learning from Labeled and Unlabeled Data with Label Propagation. [Paper link](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3864&rep=rep1&type=pdf).
    - Example code: [PyTorch](../examples/pytorch/label_propagation)
    - Tags: node classification, label propagation

379
380
381
382
## 1998

- <a name="pagerank"></a> Page et al. The PageRank Citation Ranking: Bringing Order to the Web. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5427).
    - Example code: [PyTorch](../examples/pytorch/pagerank.py)
383
    - Tags: PageRank