README.md 48.7 KB
Newer Older
1
2
# Official DGL Examples and Modules

Minjie Wang's avatar
Minjie Wang committed
3
4
5
6
The folder contains example implementations of selected research papers related to Graph Neural Networks. Note that the examples may not work with incompatible DGL versions.
* For examples working with the latest master (or the latest [nightly build](https://www.dgl.ai/pages/start.html)), check out https://github.com/dmlc/dgl/tree/master/examples.
* For examples working with a certain release, check out `https://github.com/dmlc/dgl/tree/<release_version>/examples` (E.g., https://github.com/dmlc/dgl/tree/0.5.x/examples)

7
8
## Overview

9
10
| Paper                                                        | node classification | link prediction / classification | graph property prediction | sampling           | OGB                |
| ------------------------------------------------------------ | ------------------- | -------------------------------- | ------------------------- | ------------------ | ------------------ |
11
| [Latent Dirichlet Allocation](#lda) | :heavy_check_mark:  |    :heavy_check_mark:  |  |  |  |
12
| [Network Embedding with Completely-imbalanced Labels](#rect) | :heavy_check_mark:  |                                  |                           |                    |                    |
13
| [Learning Hierarchical Graph Neural Networks for Image Clustering](#hilander) |   |                                  |                           |                    |                    |
14
| [Boost then Convolve: Gradient Boosting Meets Graph Neural Networks](#bgnn) | :heavy_check_mark:  |                                  |                           |                    |                    |
15
| [Contrastive Multi-View Representation Learning on Graphs](#mvgrl) | :heavy_check_mark: |  | :heavy_check_mark: |  |  |
16
| [Deep Graph Contrastive Representation Learning](#grace) | :heavy_check_mark: | |  | | |
17
18
19
20
21
| [Graph Random Neural Network for Semi-Supervised Learning on Graphs](#grand) | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Heterogeneous Graph Transformer](#hgt)                      | :heavy_check_mark:  | :heavy_check_mark:               |                           |                    |                    |
| [Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges](#mwe) | :heavy_check_mark:  |                                  |                           |                    | :heavy_check_mark: |
| [SIGN: Scalable Inception Graph Neural Networks](#sign)      | :heavy_check_mark:  |                                  |                           |                    | :heavy_check_mark: |
| [Strategies for Pre-training Graph Neural Networks](#prestrategy) |                     |                                  | :heavy_check_mark:        |                    |                    |
22
| [InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization](#infograph) | | | :heavy_check_mark: | | |
23
| [Graph Neural Networks with convolutional ARMA filters](#arma) | :heavy_check_mark:  |                                  |                           |                    |                    |
24
25
26
27
28
29
30
31
32
| [Predict then Propagate: Graph Neural Networks meet Personalized PageRank](#appnp) | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks](#clustergcn) | :heavy_check_mark:  |                                  |                           | :heavy_check_mark: | :heavy_check_mark: |
| [Deep Graph Infomax](#dgi)                                   | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Hierarchical Graph Representation Learning with Differentiable Pooling](#diffpool) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Representation Learning for Attributed Multiplex Heterogeneous Network](#gatne-t) |                     | :heavy_check_mark:               |                           |                    |                    |
| [How Powerful are Graph Neural Networks?](#gin)              | :heavy_check_mark:  |                                  | :heavy_check_mark:        |                    | :heavy_check_mark: |
| [Heterogeneous Graph Attention Network](#han)                | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Simplifying Graph Convolutional Networks](#sgc)             | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective](#mgcn) |                     |                                  | :heavy_check_mark:        |                    |                    |
33
| [Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism](#attentivefp) |                     |                                  | :heavy_check_mark:        |                    |                    |
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
| [MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing](#mixhop) | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Graph Attention Networks](#gat)                             | :heavy_check_mark:  |                                  |                           |                    | :heavy_check_mark: |
| [Attention-based Graph Neural Network for Semi-supervised Learning](#agnn) | :heavy_check_mark:  |                                  |                           | :heavy_check_mark: |                    |
| [Graph Convolutional Neural Networks for Web-Scale Recommender Systems](#pinsage) |                     |                                  |                           |                    |                    |
| [Semi-Supervised Classification with Graph Convolutional Networks](#gcn) | :heavy_check_mark:  | :heavy_check_mark:               | :heavy_check_mark:        |                    | :heavy_check_mark: |
| [Graph Convolutional Matrix Completion](#gcmc)               |                     | :heavy_check_mark:               |                           |                    |                    |
| [Inductive Representation Learning on Large Graphs](#graphsage) | :heavy_check_mark:  | :heavy_check_mark:               |                           | :heavy_check_mark: | :heavy_check_mark: |
| [metapath2vec: Scalable Representation Learning for Heterogeneous Networks](#metapath2vec) | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Topology Adaptive Graph Convolutional Networks](#tagcn)     | :heavy_check_mark:  |                                  |                           |                    |                    |
| [Modeling Relational Data with Graph Convolutional Networks](#rgcn) | :heavy_check_mark:  | :heavy_check_mark:               |                           | :heavy_check_mark: |                    |
| [Neural Message Passing for Quantum Chemistry](#mpnn)        |                     |                                  | :heavy_check_mark:        |                    |                    |
| [SchNet: A continuous-filter convolutional neural network for modeling quantum interactions](#schnet) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering](#chebnet) | :heavy_check_mark:  |                                  | :heavy_check_mark:        |                    |                    |
| [Geometric deep learning on graphs and manifolds using mixture model CNNs](#monet) | :heavy_check_mark:  |                                  | :heavy_check_mark:        |                    |                    |
| [Molecular Graph Convolutions: Moving Beyond Fingerprints](#weave) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [LINE: Large-scale Information Network Embedding](#line)     |                     | :heavy_check_mark:               |                           |                    | :heavy_check_mark: |
| [DeepWalk: Online Learning of Social Representations](#deepwalk) |                     | :heavy_check_mark:               |                           |                    | :heavy_check_mark: |
| [Self-Attention Graph Pooling](#sagpool)                     |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Convolutional Networks on Graphs for Learning Molecular Fingerprints](#nf) |                     |                                  | :heavy_check_mark:        |                    |                    |
KounianhuaDu's avatar
KounianhuaDu committed
53
| [GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation](#gnnfilm) | :heavy_check_mark:  |                     |                     |                     |                     |
54
| [Hierarchical Graph Pooling with Structure Learning](#hgp-sl)                                                                                 |                     |                                  | :heavy_check_mark:        |                    |                    |
55
| [Graph Representation Learning via Hard and Channel-Wise Attention Networks](#hardgat)                                   |:heavy_check_mark:                     |                 |                           |                    |                    |
56
| [Neural Graph Collaborative Filtering](#ngcf) |             | :heavy_check_mark: |                     |                   |                   |
57
| [Graph Cross Networks with Vertex Infomax Pooling](#gxn)                                   |                     |                                  | :heavy_check_mark:        |                    |                    |
lt610's avatar
lt610 committed
58
| [Towards Deeper Graph Neural Networks](#dagnn) | :heavy_check_mark:  |                                  |                           |                    |                    |
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
| [The PageRank Citation Ranking: Bringing Order to the Web](#pagerank) |  |                                  |                           |                    |                    |
| [Fast Suboptimal Algorithms for the Computation of Graph Edit Distance](#beam) |  |                                  |                           |                    |                    |
| [Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic](#astar) |  |                                  |                           |                    |                    |
| [A Three-Way Model for Collective Learning on Multi-Relational Data](#rescal) |  |                                  |                           |                    |                    |
| [Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching](#bipartite) |  |                                  |                           |                    |                    |
| [Translating Embeddings for Modeling Multi-relational Data](#transe) |  |                                  |                           |                    |                    |
| [A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance](#hausdorff) |  |                                  |                           |                    |                    |
| [Embedding Entities and Relations for Learning and Inference in Knowledge Bases](#distmul) |  |                                  |                           |                    |                    |
| [Learning Entity and Relation Embeddings for Knowledge Graph Completion](#transr) |  |                                  |                           |                    |                    |
| [Order Matters: Sequence to sequence for sets](#seq2seq) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks](#treelstm) |  |                                  |                           |                    |                    |
| [Complex Embeddings for Simple Link Prediction](#complex) |  |                                  |                           |                    |                    |
| [Gated Graph Sequence Neural Networks](#ggnn) |  |                                  |                           |                    |                    |
| [Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity](#acnn) |  |                                  |                           |                    |                    |
| [Attention Is All You Need](#transformer) |  |                                  |                           |                    |                    |
| [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](#pointnet++) |  |                                  |                           |                    |                    |
| [PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation](#pointnet) |  |                                  |                           |                    |                    |
| [Dynamic Routing Between Capsules](#capsule) |  |                                  |                           |                    |                    |
| [An End-to-End Deep Learning Architecture for Graph Classification](#dgcnn) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting](#stgcn) |  |                                  |                           |                    |                    |
| [Recurrent Relational Networks](#rrn) |  |                                  |                           |                    |                    |
| [Junction Tree Variational Autoencoder for Molecular Graph Generation](#jtvae) |  |                                  |                           |                    |                    |
| [Learning Deep Generative Models of Graphs](#dgmg) |  |                                  |                           |                    |                    |
| [RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space](#rotate) |  |                                  |                           |                    |                    |
| [A graph-convolutional neural network model for the prediction of chemical reactivity](#wln) |  |                                  |                           |                    |                    |
| [Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks](#settrans) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [Graphical Contrastive Losses for Scene Graph Parsing](#scenegraph) |  |                                  |                           |                    |                    |
| [Dynamic Graph CNN for Learning on Point Clouds](#dgcnnpoint) |  |                                  |                           |                    |                    |
| [Supervised Community Detection with Line Graph Neural Networks](#lgnn) |  |                                  |                           |                    |                    |
| [Text Generation from Knowledge Graphs with Graph Transformers](#graphwriter) |  |                                  |                           |                    |                    |
89
| [Temporal Graph Networks For Deep Learning on Dynamic Graphs](#tgn) |  | :heavy_check_mark:                                 |                           |                    |                    |
90
| [Directional Message Passing for Molecular Graphs](#dimenet) |  |                                  | :heavy_check_mark: |                           |                    |
91
| [Link Prediction Based on Graph Neural Networks](#seal) | | :heavy_check_mark: | | :heavy_check_mark: | :heavy_check_mark: |
92
| [Variational Graph Auto-Encoders](#vgae) |  | :heavy_check_mark: | | | |
KounianhuaDu's avatar
KounianhuaDu committed
93
| [Composition-based Multi-Relational Graph Convolutional Networks](#compgcn)|  |  :heavy_check_mark: | | | |
KounianhuaDu's avatar
KounianhuaDu committed
94
| [GNNExplainer: Generating Explanations for Graph Neural Networks](#gnnexplainer) |  :heavy_check_mark: |                                  |                                  |                                  |                                  |
Chen Sirui's avatar
Chen Sirui committed
95
| [Interaction Networks for Learning about Objects, Relations and Physics](#graphsim) |  |                                 |:heavy_check_mark:                 |                    |                    |
xnouhz's avatar
xnouhz committed
96
| [Representation Learning on Graphs with Jumping Knowledge Networks](#jknet) |  :heavy_check_mark: |                                  |                                  |                                  |                                  |
KounianhuaDu's avatar
KounianhuaDu committed
97
| [A Heterogeneous Information Network based Cross Domain Insurance Recommendation System for Cold Start Users](#tahin) |  |     :heavy_check_mark:       |                 |                    |                    |
xnouhz's avatar
xnouhz committed
98
| [DeeperGCN: All You Need to Train Deeper GCNs](#deepergcn)                                                                        |                                  |                                  | :heavy_check_mark:        |                    | :heavy_check_mark: |
Chen Sirui's avatar
Chen Sirui committed
99
100
| [Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forcasting](#dcrnn) |                     |                                  | :heavy_check_mark:        |                    |                    |
| [GaAN: Gated Attention Networks for Learning on large and Spatiotemporal Graphs](#gaan) |                     |                                  | :heavy_check_mark:        |                    |                    |
101
102
| [Combining Label Propagation and Simple Models Out-performs Graph Neural Networks](#correct_and_smooth) |  :heavy_check_mark: |                                  |                                  |                                  | :heavy_check_mark:                                 |
| [Learning from Labeled and Unlabeled Data with Label Propagation](#label_propagation) |  :heavy_check_mark: |                                  |                                  |                                  |                                  |
103
104
105
106
| [Heterogeneous Graph Neural Network](#hetgnn) | :heavy_check_mark: | :heavy_check_mark: | |                    | |
| [Graph Transformer Networks](#gtn) | :heavy_check_mark: |  | |  | |
| [Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding](#magnn) | :heavy_check_mark: |  | |  | |
| [Network Schema Preserving Heterogeneous Information Network Embedding](#nshe) | :heavy_check_mark: |  | |  | |
xnouhz's avatar
xnouhz committed
107

108
109
## 2021

110
111
112
- <a name="hilander"></a> Xing et al. Learning Hierarchical Graph Neural Networks for Image Clustering.
    - Example code: [PyTorch](../examples/pytorch/hilander)
    - Tags: clustering
113
114
115
- <a name="bgnn"></a> Ivanov et al. Boost then Convolve: Gradient Boosting Meets Graph Neural Networks. [Paper link](https://openreview.net/forum?id=ebS5NUfoMKL). 
    - Example code: [PyTorch](../examples/pytorch/bgnn)
    - Tags: semi-supervised node classification, tabular data, GBDT
116
117
118
- <a name="correct_and_smooth"></a> Huang et al. Combining Label Propagation and Simple Models Out-performs Graph Neural Networks. [Paper link](https://arxiv.org/abs/2010.13993). 
    - Example code: [PyTorch](../examples/pytorch/correct_and_smooth)
    - Tags: efficiency, node classification, label propagation
119

120
121
## 2020

122
123
124
- <a name="rect"></a> Wang et al. Network Embedding with Completely-imbalanced Labels. [Paper link](https://ieeexplore.ieee.org/document/8979355). 
    - Example code: [PyTorch](../examples/pytorch/rect)
    - Tags:  node classification, network embedding, completely-imbalanced labels
125
126
127
- <a name="mvgrl"></a> Hassani and Khasahmadi. Contrastive Multi-View Representation Learning on Graphs. [Paper link](https://arxiv.org/abs/2006.05582). 
    - Example code: [PyTorch](../examples/pytorch/mvgrl)
    - Tags: graph diffusion, self-supervised learning on graphs.
128
129
130
- <a name="grace"></a> Zhu et al. Deep Graph Contrastive Representation Learning. [Paper link](https://arxiv.org/abs/2006.04131). 
    - Example code: [PyTorch](../examples/pytorch/grace)
    - Tags: contrastive learning for node classification.
131
132
133
- <a name="grand"></a> Feng et al. Graph Random Neural Network for Semi-Supervised Learning on Graphs. [Paper link](https://arxiv.org/abs/2005.11079). 
    - Example code: [PyTorch](../examples/pytorch/grand)
    - Tags: semi-supervised node classification, simplifying graph convolution, data augmentation
134
135
136
137
138
139
140
141
142
143
144
145
- <a name="hgt"></a> Hu et al. Heterogeneous Graph Transformer. [Paper link](https://arxiv.org/abs/2003.01332).
    - Example code: [PyTorch](../examples/pytorch/hgt)
    - Tags: dynamic heterogeneous graphs, large-scale, node classification, link prediction
- <a name="mwe"></a> Chen. Graph Convolutional Networks for Graphs with Multi-Dimensionally Weighted Edges. [Paper link](https://cims.nyu.edu/~chenzh/files/GCN_with_edge_weights.pdf).
    - Example code: [PyTorch on ogbn-proteins](../examples/pytorch/ogb/ogbn-proteins)
    - Tags: node classification, weighted graphs, OGB
- <a name="sign"></a> Frasca et al. SIGN: Scalable Inception Graph Neural Networks. [Paper link](https://arxiv.org/abs/2004.11198).
    - Example code: [PyTorch on ogbn-arxiv/products/mag](../examples/pytorch/ogb/sign), [PyTorch](../examples/pytorch/sign)
    - Tags: node classification, OGB, large-scale, heterogeneous graphs
- <a name="prestrategy"></a> Hu et al. Strategies for Pre-training Graph Neural Networks. [Paper link](https://arxiv.org/abs/1905.12265).
    - Example code: [Molecule embedding](https://github.com/awslabs/dgl-lifesci/tree/master/examples/molecule_embeddings), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, graph classification, unsupervised learning, self-supervised learning, molecular property prediction
146
- <a name="gnnfilm"></a> Marc Brockschmidt. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation. [Paper link](https://arxiv.org/abs/1906.12192).
147
    - Example code: [PyTorch](../examples/pytorch/GNN-FiLM)
KounianhuaDu's avatar
KounianhuaDu committed
148
    - Tags: multi-relational graphs, hypernetworks, GNN architectures
149
- <a name="gxn"></a> Li, Maosen, et al. Graph Cross Networks with Vertex Infomax Pooling. [Paper link](https://arxiv.org/abs/2010.01804).
150
    - Example code: [PyTorch](../examples/pytorch/gxn)
151
    - Tags: pooling, graph classification
lt610's avatar
lt610 committed
152
- <a name="dagnn"></a> Liu et al. Towards Deeper Graph Neural Networks. [Paper link](https://arxiv.org/abs/2007.09296).
153
    - Example code: [PyTorch](../examples/pytorch/dagnn)
lt610's avatar
lt610 committed
154
    - Tags: over-smoothing, node classification
155
156
157
- <a name="dimenet"></a> Klicpera et al. Directional Message Passing for Molecular Graphs. [Paper link](https://arxiv.org/abs/2003.03123).
    - Example code: [PyTorch](../examples/pytorch/dimenet)
    - Tags: molecules, molecular property prediction, quantum chemistry
158
159
- <a name="tgn"></a> Rossi et al. Temporal Graph Networks For Deep Learning on Dynamic Graphs. [Paper link](https://arxiv.org/abs/2006.10637).
    - Example code: [Pytorch](../examples/pytorch/tgn)
160
    - Tags: temporal, node classification 
KounianhuaDu's avatar
KounianhuaDu committed
161
- <a name="compgcn"></a> Vashishth, Shikhar, et al. Composition-based Multi-Relational Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1911.03082).
xnouhz's avatar
xnouhz committed
162
    - Example code: [PyTorch](../examples/pytorch/compGCN)
KounianhuaDu's avatar
KounianhuaDu committed
163
    - Tags: multi-relational graphs, graph neural network
xnouhz's avatar
xnouhz committed
164
165
166
167
- <a name="deepergcn"></a> Li et al. DeeperGCN: All You Need to Train Deeper GCNs. [Paper link](https://arxiv.org/abs/2006.07739).
    - Example code: [PyTorch](../examples/pytorch/deepergcn)
    - Tags: over-smoothing, deeper gnn, OGB

KounianhuaDu's avatar
KounianhuaDu committed
168
169
170
- <a name="tahin"></a> Bi, Ye, et al. A Heterogeneous Information Network based Cross DomainInsurance Recommendation System for Cold Start Users. [Paper link](https://arxiv.org/abs/2007.15293).
    - Example code: [Pytorch](../examples/pytorch/TAHIN)
    - Tags: cross-domain recommendation, graph neural network
171
172
173
174
175
176
- <a name="magnn"></a> Fu X, Zhang J, Meng Z, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. [Paper link](https://dl.acm.org/doi/abs/10.1145/3366423.3380297).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/MAGNN)
    - Tags: Heterogeneous graph, Graph neural network, Graph embedding
- <a name="nshe"></a> Zhao J, Wang X, et al. Network Schema Preserving Heterogeneous Information Network Embedding. [Paper link](https://www.ijcai.org/Proceedings/2020/0190.pdf).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/NSHE)
    - Tags: Heterogeneous graph, Graph neural network, Graph embedding, Network Schema
KounianhuaDu's avatar
KounianhuaDu committed
177

178
179
## 2019

180
181
182
- <a name="infograph"></a> Sun et al. InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization. [Paper link](https://arxiv.org/abs/1908.01000). 
    - Example code: [PyTorch](../examples/pytorch/infograph)
    - Tags: semi-supervised graph regression, unsupervised graph classification
183
184
185
- <a name="arma"></a>  Bianchi et al. Graph Neural Networks with Convolutional ARMA Filters. [Paper link](https://arxiv.org/abs/1901.01343).
    - Example code: [PyTorch](../examples/pytorch/arma)
    - Tags: node classification
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
- <a name="appnp"></a> Klicpera et al. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. [Paper link](https://arxiv.org/abs/1810.05997).
    - Example code: [PyTorch](../examples/pytorch/appnp), [MXNet](../examples/mxnet/appnp)
    - Tags: node classification
- <a name="clustergcn"></a> Chiang et al. Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1905.07953).
    - Example code: [PyTorch](../examples/pytorch/cluster_gcn), [PyTorch-based GraphSAGE variant on OGB](../examples/pytorch/ogb/cluster-sage), [PyTorch-based GAT variant on OGB](../examples/pytorch/ogb/cluster-gat)
    - Tags: graph partition, node classification, large-scale, OGB, sampling
- <a name="dgi"></a> Veličković et al. Deep Graph Infomax. [Paper link](https://arxiv.org/abs/1809.10341).
    - Example code: [PyTorch](../examples/pytorch/dgi), [TensorFlow](../examples/tensorflow/dgi)
    - Tags: unsupervised learning, node classification
- <a name="diffpool"></a> Ying et al. Hierarchical Graph Representation Learning with Differentiable Pooling. [Paper link](https://arxiv.org/abs/1806.08804).
    - Example code: [PyTorch](../examples/pytorch/diffpool)
    - Tags: pooling, graph classification, graph coarsening
- <a name="gatne-t"></a> Cen et al. Representation Learning for Attributed Multiplex Heterogeneous Network. [Paper link](https://arxiv.org/abs/1905.01669v2).
    - Example code: [PyTorch](../examples/pytorch/GATNE-T)
    - Tags: heterogeneous graphs, link prediction, large-scale
- <a name="gin"></a> Xu et al. How Powerful are Graph Neural Networks? [Paper link](https://arxiv.org/abs/1810.00826).
    - Example code: [PyTorch on graph classification](../examples/pytorch/gin), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [MXNet](../examples/mxnet/gin)
    - Tags: graph classification, node classification, OGB
- <a name="graphwriter"></a> Koncel-Kedziorski et al. Text Generation from Knowledge Graphs with Graph Transformers. [Paper link](https://arxiv.org/abs/1904.02342).
    - Example code: [PyTorch](../examples/pytorch/graphwriter)
    - Tags: knowledge graph, text generation
- <a name="han"></a> Wang et al. Heterogeneous Graph Attention Network. [Paper link](https://arxiv.org/abs/1903.07293).
208
    - Example code: [PyTorch](../examples/pytorch/han), [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HAN)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    - Tags: heterogeneous graphs, node classification
- <a name="lgnn"></a> Chen et al. Supervised Community Detection with Line Graph Neural Networks. [Paper link](https://arxiv.org/abs/1705.08415).
    - Example code: [PyTorch](../examples/pytorch/line_graph)
    - Tags: line graph, community detection
- <a name="sgc"></a> Wu et al. Simplifying Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1902.07153).
    - Example code: [PyTorch](../examples/pytorch/sgc), [MXNet](../examples/mxnet/sgc)
    - Tags: node classification
- <a name="dgcnnpoint"></a> Wang et al. Dynamic Graph CNN for Learning on Point Clouds. [Paper link](https://arxiv.org/abs/1801.07829).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/edgeconv)
    - Tags: point cloud classification
- <a name="scenegraph"></a> Zhang et al. Graphical Contrastive Losses for Scene Graph Parsing. [Paper link](https://arxiv.org/abs/1903.02728).
    - Example code: [MXNet](../examples/mxnet/scenegraph)
    - Tags: scene graph extraction
- <a name="settrans"></a> Lee et al. Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. [Paper link](https://arxiv.org/abs/1810.00825).
    - Pooling module: [PyTorch encoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerencoder), [PyTorch decoder](https://docs.dgl.ai/api/python/nn.pytorch.html#settransformerdecoder)
    - Tags: graph classification
- <a name="wln"></a> Coley et al. A graph-convolutional neural network model for the prediction of chemical reactivity. [Paper link](https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc04228d#!divAbstract).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/reaction_prediction/rexgen_direct)
    - Tags: molecules, reaction prediction
- <a name="mgcn"></a> Lu et al. Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. [Paper link](https://arxiv.org/abs/1906.11081).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy)
    - Tags: molecules, quantum chemistry
- <a name="attentivefp"></a> Xiong et al. Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism. [Paper link](https://pubs.acs.org/doi/10.1021/acs.jmedchem.9b00959).
    - Example code: [PyTorch (with attention visualization)](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/pubchem_aromaticity), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, molecular property prediction
- <a name="rotate"></a> Sun et al. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. [Paper link](https://arxiv.org/pdf/1902.10197.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding
- <a name="mixhop"></a> Abu-El-Haija et al. MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing. [Paper link](https://arxiv.org/abs/1905.00067).
    - Example code: [PyTorch](../examples/pytorch/mixhop)
    - Tags: node classification
240
241
242
- <a name="sagpool"></a> Lee, Junhyun, et al. Self-Attention Graph Pooling. [Paper link](https://arxiv.org/abs/1904.08082).
    - Example code: [PyTorch](../examples/pytorch/sagpool)
    - Tags: graph classification, pooling
243
244
245
- <a name="hgp-sl"></a> Zhang, Zhen, et al. Hierarchical Graph Pooling with Structure Learning. [Paper link](https://arxiv.org/abs/1911.05954).
    - Example code: [PyTorch](../examples/pytorch/hgp_sl)
    - Tags: graph classification, pooling
246
- <a name='hardgat'></a> Gao, Hongyang, et al. Graph Representation Learning via Hard and Channel-Wise Attention Networks [Paper link](https://arxiv.org/abs/1907.04652).
247
    - Example code: [PyTorch](../examples/pytorch/hardgat)
248
    - Tags: node classification, graph attention
249
- <a name='ngcf'></a> Wang, Xiang, et al. Neural Graph Collaborative Filtering. [Paper link](https://arxiv.org/abs/1905.08108).
250
    - Example code: [PyTorch](../examples/pytorch/NGCF)
251
    - Tags: Collaborative Filtering, Recommendation, Graph Neural Network 
KounianhuaDu's avatar
KounianhuaDu committed
252
253
254
- <a name='gnnexplainer'></a> Ying, Rex, et al. GNNExplainer: Generating Explanations for Graph Neural Networks. [Paper link](https://arxiv.org/abs/1903.03894).
    - Example code: [PyTorch](../examples/pytorch/gnn_explainer)
    - Tags: Graph Neural Network, Explainability
255
256
257
258
259
260
- <a name='hetgnn'></a> Zhang C, Song D, et al. Heterogeneous graph neural network. [Paper link](https://dl.acm.org/doi/abs/10.1145/3292500.3330961).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HetGNN)
    - Tags:  Heterogeneous graphs, Graph neural networks, Graph embedding
- <a name='gtn'></a> Yun S, Jeong M, et al. Graph transformer networks. [Paper link](https://arxiv.org/abs/1911.06455).
    - Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/GTN)
    - Tags:  Heterogeneous graphs, Graph neural networks, Graph structure
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
## 2018

- <a name="dgmg"></a> Li et al. Learning Deep Generative Models of Graphs. [Paper link](https://arxiv.org/abs/1803.03324).
    - Example code: [PyTorch example for cycles](../examples/pytorch/dgmg), [PyTorch example for molecules](https://github.com/awslabs/dgl-lifesci/tree/master/examples/generative_models/dgmg)
    - Tags: generative models, autoregressive models, molecules

- <a name="gat"></a> Veličković et al. Graph Attention Networks. [Paper link](https://arxiv.org/abs/1710.10903).
    - Example code: [PyTorch](../examples/pytorch/gat), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [TensorFlow](../examples/tensorflow/gat), [MXNet](../examples/mxnet/gat)
    - Tags: node classification, OGB

- <a name="jtvae"></a> Jin et al. Junction Tree Variational Autoencoder for Molecular Graph Generation. [Paper link](https://arxiv.org/abs/1802.04364).
    - Example code: [PyTorch](../examples/pytorch/jtnn)
    - Tags: generative models, molecules, VAE

- <a name="agnn"></a> Thekumparampil et al. Attention-based Graph Neural Network for Semi-supervised Learning. [Paper link](https://arxiv.org/abs/1803.03735).
    - Example code: [PyTorch](../examples/pytorch/model_zoo/citation_network)
    - Tags: node classification
    
- <a name="pinsage"></a> Ying et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. [Paper link](https://arxiv.org/abs/1806.01973).
    - Example code: [PyTorch](../examples/pytorch/pinsage)
    - Tags: recommender system, large-scale, sampling

- <a name="rrn"></a> Berg Palm et al. Recurrent Relational Networks. [Paper link](https://arxiv.org/abs/1711.08028).
    - Example code: [PyTorch](../examples/pytorch/rrn)
    - Tags: sudoku solving

- <a name="stgcn"></a> Yu et al. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. [Paper link](https://arxiv.org/abs/1709.04875v4).
    - Example code: [PyTorch](../examples/pytorch/stgcn_wave)
    - Tags: spatio-temporal, traffic forecasting

- <a name="dgcnn"></a> Zhang et al. An End-to-End Deep Learning Architecture for Graph Classification. [Paper link](https://www.cse.wustl.edu/~ychen/public/DGCNN.pdf).
    - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#sortpooling), [TensorFlow](https://docs.dgl.ai/api/python/nn.tensorflow.html#sortpooling), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#sortpooling)
    - Tags: graph classification

Smile's avatar
Smile committed
296
- <a name="seal"></a>  Zhang et al. Link Prediction Based on Graph Neural Networks. [Paper link](https://papers.nips.cc/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf).
xnouhz's avatar
xnouhz committed
297
    - Example code: [PyTorch](../examples/pytorch/seal)
Smile's avatar
Smile committed
298
299
    - Tags: link prediction, sampling

xnouhz's avatar
xnouhz committed
300
- <a name="jknet"></a>  Xu et al. Representation Learning on Graphs with Jumping Knowledge Networks. [Paper link](https://arxiv.org/abs/1806.03536).
xnouhz's avatar
xnouhz committed
301
    - Example code: [PyTorch](../examples/pytorch/jknet)
xnouhz's avatar
xnouhz committed
302
303
    - Tags: message passing, neighborhood

Chen Sirui's avatar
Chen Sirui committed
304
305
306
- <a name="gaan"></a> Zhang et al. GaAN: Gated Attention Networks for Learning on Large and Spatiotemporal Graphs. [Paper link](https://arxiv.org/abs/1803.07294).
    - Example code: [pytorch](../examples/pytorch/dtgrnn)
    - Tags: Static discrete temporal graph, traffic forcasting
Smile's avatar
Smile committed
307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
## 2017

- <a name="gcn"></a> Kipf and Welling. Semi-Supervised Classification with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1609.02907). 
    - Example code: [PyTorch](../examples/pytorch/gcn), [PyTorch on ogbn-arxiv](../examples/pytorch/ogb/ogbn-arxiv), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [PyTorch on ogbg-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/ogbg_ppa), [TensorFlow](../examples/tensorflow/gcn), [MXNet](../examples/mxnet/gcn)
    - Tags: node classification, link prediction, graph classification, OGB

- <a name="capsule"></a> Sabour et al. Dynamic Routing Between Capsules. [Paper link](https://arxiv.org/abs/1710.09829).
    - Example code: [PyTorch](../examples/pytorch/capsule)
    - Tags: image classification
  
- <a name="gcmc"></a> van den Berg et al. Graph Convolutional Matrix Completion. [Paper link](https://arxiv.org/abs/1706.02263).
    - Example code: [PyTorch](../examples/pytorch/gcmc)
    - Tags: matrix completion, recommender system, link prediction, bipartite graphs

- <a name="graphsage"></a> Hamilton et al. Inductive Representation Learning on Large Graphs. [Paper link](https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf).
    - Example code: [PyTorch](../examples/pytorch/graphsage), [PyTorch on ogbn-products](../examples/pytorch/ogb/ogbn-products), [PyTorch on ogbl-ppa](https://github.com/awslabs/dgl-lifesci/tree/master/examples/link_prediction/ogbl-ppa), [MXNet](../examples/mxnet/graphsage)
    - Tags: node classification, sampling, unsupervised learning, link prediction, OGB

- <a name="metapath2vec"></a> Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. [Paper link](https://dl.acm.org/doi/10.1145/3097983.3098036).
    - Example code: [PyTorch](../examples/pytorch/metapath2vec)
    - Tags: heterogeneous graphs, network embedding, large-scale, node classification

- <a name="tagcn"></a> Du et al. Topology Adaptive Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1710.10370).
    - Example code: [PyTorch](../examples/pytorch/tagcn), [MXNet](../examples/mxnet/tagcn)
    - Tags: node classification
    
- <a name="pointnet"></a> Qi et al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. [Paper link](https://arxiv.org/abs/1612.00593).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet)
    - Tags: point cloud classification, point cloud part-segmentation

- <a name="pointnet++"></a> Qi et al. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. [Paper link](https://arxiv.org/abs/1706.02413).
    - Example code: [PyTorch](../examples/pytorch/pointcloud/pointnet)
    - Tags: point cloud classification
    
- <a name="rgcn"></a> Schlichtkrull. Modeling Relational Data with Graph Convolutional Networks. [Paper link](https://arxiv.org/abs/1703.06103).
    - Example code: [PyTorch example using homogeneous DGLGraphs](../examples/pytorch/rgcn), [PyTorch](../examples/pytorch/rgcn-hetero), [TensorFlow](../examples/tensorflow/rgcn), [MXNet](../examples/mxnet/rgcn)
    - Tags: node classification, link prediction, heterogeneous graphs, sampling

- <a name="transformer"></a> Vaswani et al. Attention Is All You Need. [Paper link](https://arxiv.org/abs/1706.03762).
    - Example code: [PyTorch](../examples/pytorch/transformer)
    - Tags: machine translation

- <a name="mpnn"></a> Gilmer et al. Neural Message Passing for Quantum Chemistry. [Paper link](https://arxiv.org/abs/1704.01212).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, quantum chemistry

- <a name="acnn"></a> Gomes et al. Atomic Convolutional Networks for Predicting Protein-Ligand Binding Affinity. [Paper link](https://arxiv.org/abs/1703.10603).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/binding_affinity_prediction)
    - Tags: binding affinity prediction, molecules, proteins

- <a name="schnet"></a> Schütt et al. SchNet: A continuous-filter convolutional neural network for modeling quantum interactions. [Paper link](https://arxiv.org/abs/1706.08566).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/alchemy)
    - Tags: molecules, quantum chemistry

Chen Sirui's avatar
Chen Sirui committed
362
363
364
365
- <a name="dcrnn"></a> Li et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forcasting. [Paper link](https://arxiv.org/abs/1707.01926).
    - Example code: [Pytorch](../examples/pytorch/dtgrnn)
    - Tags: Static discrete temporal graph, traffic forcasting.

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
## 2016

- <a name="ggnn"></a> Li et al. Gated Graph Sequence Neural Networks. [Paper link](https://arxiv.org/abs/1511.05493).
    - Example code: [PyTorch](../examples/pytorch/ggnn)
    - Tags: question answering
- <a name="chebnet"></a> Defferrard et al. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. [Paper link](https://arxiv.org/abs/1606.09375).
    - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/model_zoo/citation_network)
    - Tags: image classification, graph classification, node classification
- <a name="monet"></a> Monti et al. Geometric deep learning on graphs and manifolds using mixture model CNNs. [Paper link](https://arxiv.org/abs/1611.08402).
    - Example code: [PyTorch on image classification](../examples/pytorch/model_zoo/geometric), [PyTorch on node classification](../examples/pytorch/monet), [MXNet on node classification](../examples/mxnet/monet)
    - Tags: image classification, graph classification, node classification
- <a name="weave"></a> Kearnes et al. Molecular Graph Convolutions: Moving Beyond Fingerprints. [Paper link](https://arxiv.org/abs/1603.00856).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecular property prediction
- <a name="complex"></a> Trouillon et al. Complex Embeddings for Simple Link Prediction. [Paper link](http://proceedings.mlr.press/v48/trouillon16.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding
383
384
385
- <a name="vgae"></a> Thomas et al. Variational Graph Auto-Encoders. [Paper link](https://arxiv.org/abs/1611.07308).
    - Example code: [PyTorch](../examples/pytorch/vgae)
    - Tags: link prediction
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

## 2015

- <a name="line"></a> Tang et al. LINE: Large-scale Information Network Embedding. [Paper link](https://arxiv.org/abs/1503.03578).
    - Example code: [PyTorch on OGB](../examples/pytorch/ogb/line)
    - Tags: network embedding, transductive learning, OGB, link prediction

- <a name="treelstm"></a> Sheng Tai et al. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. [Paper link](https://arxiv.org/abs/1503.00075).
    - Example code: [PyTorch](../examples/pytorch/tree_lstm), [MXNet](../examples/mxnet/tree_lstm)
    - Tags: sentiment classification
    
- <a name="seq2seq"></a> Vinyals et al. Order Matters: Sequence to sequence for sets. [Paper link](https://arxiv.org/abs/1511.06391).
    - Pooling module: [PyTorch](https://docs.dgl.ai/api/python/nn.pytorch.html#set2set), [MXNet](https://docs.dgl.ai/api/python/nn.mxnet.html#set2set)
    - Tags: graph classification
    
- <a name="transr"></a> Lin et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion. [Paper link](https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/9571).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding

- <a name="distmul"></a> Yang et al. Embedding Entities and Relations for Learning and Inference in Knowledge Bases. [Paper link](https://arxiv.org/abs/1412.6575).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding

Mufei Li's avatar
Mufei Li committed
409
410
411
412
- <a name="nf"></a> Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints. [Paper link](https://arxiv.org/abs/1509.09292).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/moleculenet), [PyTorch for custom data](https://github.com/awslabs/dgl-lifesci/tree/master/examples/property_prediction/csv_data_configuration)
    - Tags: molecules, molecular property prediction

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
## 2014

- <a name="deepwalk"></a> Perozzi et al. DeepWalk: Online Learning of Social Representations. [Paper link](https://arxiv.org/abs/1403.6652).
    - Example code: [PyTorch on OGB](../examples/pytorch/ogb/deepwalk)
    - Tags: network embedding, transductive learning, OGB, link prediction

- <a name="hausdorff"></a> Fischer et al. A Hausdorff Heuristic for Efficient Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/978-3-662-44415-3_9).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

## 2013

- <a name="transe"></a> Bordes et al. Translating Embeddings for Modeling Multi-relational Data. [Paper link](https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding

## 2011

- <a name="bipartite"></a> Fankhauser et al. Speeding Up Graph Edit Distance Computation through Fast Bipartite Matching. [Paper link](https://link.springer.com/chapter/10.1007/978-3-642-20844-7_11).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

- <a name="rescal"></a> Nickel et al. A Three-Way Model for Collective Learning on Multi-Relational Data. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.2015&rep=rep1&type=pdf).
    - Example code: [PyTorch](https://github.com/awslabs/dgl-ke/tree/master/examples), [PyTorch for custom data](https://aws-dglke.readthedocs.io/en/latest/commands.html)
    - Tags: knowledge graph embedding

439
440
441
442
443
444
## 2010

- <a name="lda"></a> Hoffman et al. Online Learning for Latent Dirichlet Allocation. [Paper link](https://papers.nips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf).
    - Example code: [PyTorch](../examples/pytorch/lda)
    - Tags: sklearn, decomposition, latent Dirichlet allocation

445
446
447
448
449
450
451
452
453
454
455
456
## 2009

- <a name="astar"></a> Riesen et al. Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic. [Paper link](https://core.ac.uk/download/pdf/33054885.pdf).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

## 2006

- <a name="beam"></a> Neuhaus et al. Fast Suboptimal Algorithms for the Computation of Graph Edit Distance. [Paper link](https://link.springer.com/chapter/10.1007/11815921_17).
    - Example code: [PyTorch](../examples/pytorch/graph_matching)
    - Tags: graph edit distance, graph matching

457
458
459
460
461
462
## 2002

- <a name="label_propagation"></a> Zhu & Ghahramani. Learning from Labeled and Unlabeled Data with Label Propagation. [Paper link](https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3864&rep=rep1&type=pdf).
    - Example code: [PyTorch](../examples/pytorch/label_propagation)
    - Tags: node classification, label propagation

463
464
465
466
467
## 1998

- <a name="pagerank"></a> Page et al. The PageRank Citation Ranking: Bringing Order to the Web. [Paper link](http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5427).
    - Example code: [PyTorch](../examples/pytorch/pagerank.py)
    - Tags: PageRank