"git@developer.sourcefind.cn:renzhc/diffusers_dcu.git" did not exist on "216d19017852e80a38dac4e42eb0759c96810313"
Unverified Commit 6c59fee9 authored by Theheavens's avatar Theheavens Committed by GitHub
Browse files

[Model] HetGNN/GTN/HAN/NSHE/MAGNN examples (#2993)

* commit hetgnn

* Update README.md

* Delete examples/pytorch/hetgnn directory

* Update README.md

* Update README.md

* Update README.md

* Revert "Update README.md"

This reverts commit 14cdb3da76c58665ff879eae17ecf9eb28b66cce.

* Update README.md

* Add files via upload

* Update README.md

* Update README.md
parent fd72df9a
...@@ -99,6 +99,10 @@ The folder contains example implementations of selected research papers related ...@@ -99,6 +99,10 @@ The folder contains example implementations of selected research papers related
| [GaAN: Gated Attention Networks for Learning on large and Spatiotemporal Graphs](#gaan) | | | :heavy_check_mark: | | | | [GaAN: Gated Attention Networks for Learning on large and Spatiotemporal Graphs](#gaan) | | | :heavy_check_mark: | | |
| [Combining Label Propagation and Simple Models Out-performs Graph Neural Networks](#correct_and_smooth) | :heavy_check_mark: | | | | :heavy_check_mark: | | [Combining Label Propagation and Simple Models Out-performs Graph Neural Networks](#correct_and_smooth) | :heavy_check_mark: | | | | :heavy_check_mark: |
| [Learning from Labeled and Unlabeled Data with Label Propagation](#label_propagation) | :heavy_check_mark: | | | | | | [Learning from Labeled and Unlabeled Data with Label Propagation](#label_propagation) | :heavy_check_mark: | | | | |
| [Heterogeneous Graph Neural Network](#hetgnn) | :heavy_check_mark: | :heavy_check_mark: | | | |
| [Graph Transformer Networks](#gtn) | :heavy_check_mark: | | | | |
| [Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding](#magnn) | :heavy_check_mark: | | | | |
| [Network Schema Preserving Heterogeneous Information Network Embedding](#nshe) | :heavy_check_mark: | | | | |
## 2021 ## 2021
...@@ -160,6 +164,12 @@ The folder contains example implementations of selected research papers related ...@@ -160,6 +164,12 @@ The folder contains example implementations of selected research papers related
- <a name="tahin"></a> Bi, Ye, et al. A Heterogeneous Information Network based Cross DomainInsurance Recommendation System for Cold Start Users. [Paper link](https://arxiv.org/abs/2007.15293). - <a name="tahin"></a> Bi, Ye, et al. A Heterogeneous Information Network based Cross DomainInsurance Recommendation System for Cold Start Users. [Paper link](https://arxiv.org/abs/2007.15293).
- Example code: [Pytorch](../examples/pytorch/TAHIN) - Example code: [Pytorch](../examples/pytorch/TAHIN)
- Tags: cross-domain recommendation, graph neural network - Tags: cross-domain recommendation, graph neural network
- <a name="magnn"></a> Fu X, Zhang J, Meng Z, et al. MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. [Paper link](https://dl.acm.org/doi/abs/10.1145/3366423.3380297).
- Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/MAGNN)
- Tags: Heterogeneous graph, Graph neural network, Graph embedding
- <a name="nshe"></a> Zhao J, Wang X, et al. Network Schema Preserving Heterogeneous Information Network Embedding. [Paper link](https://www.ijcai.org/Proceedings/2020/0190.pdf).
- Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/NSHE)
- Tags: Heterogeneous graph, Graph neural network, Graph embedding, Network Schema
## 2019 ## 2019
...@@ -191,7 +201,7 @@ The folder contains example implementations of selected research papers related ...@@ -191,7 +201,7 @@ The folder contains example implementations of selected research papers related
- Example code: [PyTorch](../examples/pytorch/graphwriter) - Example code: [PyTorch](../examples/pytorch/graphwriter)
- Tags: knowledge graph, text generation - Tags: knowledge graph, text generation
- <a name="han"></a> Wang et al. Heterogeneous Graph Attention Network. [Paper link](https://arxiv.org/abs/1903.07293). - <a name="han"></a> Wang et al. Heterogeneous Graph Attention Network. [Paper link](https://arxiv.org/abs/1903.07293).
- Example code: [PyTorch](../examples/pytorch/han) - Example code: [PyTorch](../examples/pytorch/han), [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HAN)
- Tags: heterogeneous graphs, node classification - Tags: heterogeneous graphs, node classification
- <a name="lgnn"></a> Chen et al. Supervised Community Detection with Line Graph Neural Networks. [Paper link](https://arxiv.org/abs/1705.08415). - <a name="lgnn"></a> Chen et al. Supervised Community Detection with Line Graph Neural Networks. [Paper link](https://arxiv.org/abs/1705.08415).
- Example code: [PyTorch](../examples/pytorch/line_graph) - Example code: [PyTorch](../examples/pytorch/line_graph)
...@@ -238,6 +248,12 @@ The folder contains example implementations of selected research papers related ...@@ -238,6 +248,12 @@ The folder contains example implementations of selected research papers related
- <a name='gnnexplainer'></a> Ying, Rex, et al. GNNExplainer: Generating Explanations for Graph Neural Networks. [Paper link](https://arxiv.org/abs/1903.03894). - <a name='gnnexplainer'></a> Ying, Rex, et al. GNNExplainer: Generating Explanations for Graph Neural Networks. [Paper link](https://arxiv.org/abs/1903.03894).
- Example code: [PyTorch](../examples/pytorch/gnn_explainer) - Example code: [PyTorch](../examples/pytorch/gnn_explainer)
- Tags: Graph Neural Network, Explainability - Tags: Graph Neural Network, Explainability
- <a name='hetgnn'></a> Zhang C, Song D, et al. Heterogeneous graph neural network. [Paper link](https://dl.acm.org/doi/abs/10.1145/3292500.3330961).
- Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/HetGNN)
- Tags: Heterogeneous graphs, Graph neural networks, Graph embedding
- <a name='gtn'></a> Yun S, Jeong M, et al. Graph transformer networks. [Paper link](https://arxiv.org/abs/1911.06455).
- Example code: [OpenHGNN](https://github.com/BUPT-GAMMA/OpenHGNN/tree/main/openhgnn/output/GTN)
- Tags: Heterogeneous graphs, Graph neural networks, Graph structure
## 2018 ## 2018
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment