randomwalk_gpu.cu 19.2 KB
Newer Older
1
/*!
2
 *  Copyright (c) 2021-2022 by Contributors
3
 * \file graph/sampling/randomwalk_gpu.cu
4
 * \brief CUDA random walk sampleing
5
6
7
8
9
10
11
12
13
14
15
 */

#include <dgl/array.h>
#include <dgl/base_heterograph.h>
#include <dgl/runtime/device_api.h>
#include <dgl/random.h>
#include <curand_kernel.h>
#include <vector>
#include <utility>
#include <tuple>

16
#include "../../../array/cuda/dgl_cub.cuh"
17
#include "../../../runtime/cuda/cuda_common.h"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "frequency_hashmap.cuh"

namespace dgl {

using namespace dgl::runtime;
using namespace dgl::aten;

namespace sampling {

namespace impl {

namespace {

template<typename IdType>
struct GraphKernelData {
  const IdType *in_ptr;
  const IdType *in_cols;
  const IdType *data;
};

template<typename IdType, typename FloatType, int BLOCK_SIZE, int TILE_SIZE>
__global__ void _RandomWalkKernel(
    const uint64_t rand_seed, const IdType *seed_data, const int64_t num_seeds,
    const IdType* metapath_data, const uint64_t max_num_steps,
    const GraphKernelData<IdType>* graphs,
    const FloatType* restart_prob_data,
    const int64_t restart_prob_size,
45
    const int64_t max_nodes,
46
47
48
49
50
51
52
53
54
55
56
57
58
    IdType *out_traces_data,
    IdType *out_eids_data) {
  assert(BLOCK_SIZE == blockDim.x);
  int64_t idx = blockIdx.x * TILE_SIZE + threadIdx.x;
  int64_t last_idx = min(static_cast<int64_t>(blockIdx.x + 1) * TILE_SIZE, num_seeds);
  int64_t trace_length = (max_num_steps + 1);
  curandState rng;
  // reference:
  //     https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
  curand_init(rand_seed + idx, 0, 0, &rng);

  while (idx < last_idx) {
    IdType curr = seed_data[idx];
59
    assert(curr < max_nodes);
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    IdType *traces_data_ptr = &out_traces_data[idx * trace_length];
    IdType *eids_data_ptr = &out_eids_data[idx * max_num_steps];
    *(traces_data_ptr++) = curr;
    int64_t step_idx;
    for (step_idx = 0; step_idx < max_num_steps; ++step_idx) {
      IdType metapath_id = metapath_data[step_idx];
      const GraphKernelData<IdType> &graph = graphs[metapath_id];
      const int64_t in_row_start = graph.in_ptr[curr];
      const int64_t deg = graph.in_ptr[curr + 1] - graph.in_ptr[curr];
      if (deg == 0) {  // the degree is zero
        break;
      }
      const int64_t num = curand(&rng) % deg;
      IdType pick = graph.in_cols[in_row_start + num];
      IdType eid = (graph.data? graph.data[in_row_start + num] : in_row_start + num);
      *traces_data_ptr = pick;
      *eids_data_ptr = eid;
      if ((restart_prob_size > 1) && (curand_uniform(&rng) < restart_prob_data[step_idx])) {
        break;
      } else if ((restart_prob_size == 1) && (curand_uniform(&rng) < restart_prob_data[0])) {
        break;
      }
      ++traces_data_ptr; ++eids_data_ptr;
      curr = pick;
    }
    for (; step_idx < max_num_steps; ++step_idx) {
      *(traces_data_ptr++) = -1;
      *(eids_data_ptr++) = -1;
    }
    idx += BLOCK_SIZE;
  }
}

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
template <typename IdType, typename FloatType, int BLOCK_SIZE, int TILE_SIZE>
__global__ void _RandomWalkBiasedKernel(
    const uint64_t rand_seed,
    const IdType *seed_data,
    const int64_t num_seeds,
    const IdType *metapath_data,
    const uint64_t max_num_steps,
    const GraphKernelData<IdType> *graphs,
    const FloatType **probs,
    const FloatType **prob_sums,
    const FloatType *restart_prob_data,
    const int64_t restart_prob_size,
    const int64_t max_nodes,
    IdType *out_traces_data,
    IdType *out_eids_data) {
  assert(BLOCK_SIZE == blockDim.x);
  int64_t idx = blockIdx.x * TILE_SIZE + threadIdx.x;
  int64_t last_idx = min(static_cast<int64_t>(blockIdx.x + 1) * TILE_SIZE, num_seeds);
  int64_t trace_length = (max_num_steps + 1);
  curandState rng;
  // reference:
  //     https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
  curand_init(rand_seed + idx, 0, 0, &rng);

  while (idx < last_idx) {
    IdType curr = seed_data[idx];
    assert(curr < max_nodes);
    IdType *traces_data_ptr = &out_traces_data[idx * trace_length];
    IdType *eids_data_ptr = &out_eids_data[idx * max_num_steps];
    *(traces_data_ptr++) = curr;
    int64_t step_idx;
    for (step_idx = 0; step_idx < max_num_steps; ++step_idx) {
      IdType metapath_id = metapath_data[step_idx];
      const GraphKernelData<IdType> &graph = graphs[metapath_id];
      const int64_t in_row_start = graph.in_ptr[curr];
      const int64_t deg = graph.in_ptr[curr + 1] - graph.in_ptr[curr];
      if (deg == 0) {  // the degree is zero
        break;
      }

      // randomly select by weight
      const FloatType *prob_sum = prob_sums[metapath_id];
      const FloatType *prob = probs[metapath_id];
      int64_t num;
      if (prob == nullptr) {
        num = curand(&rng) % deg;
      } else {
        auto rnd_sum_w = prob_sum[curr] * curand_uniform(&rng);
        FloatType sum_w{0.};
        for (num = 0; num < deg; ++num) {
          sum_w += prob[in_row_start + num];
          if (sum_w >= rnd_sum_w) break;
        }
      }

      IdType pick = graph.in_cols[in_row_start + num];
      IdType eid = (graph.data? graph.data[in_row_start + num] : in_row_start + num);
      *traces_data_ptr = pick;
      *eids_data_ptr = eid;
      if ((restart_prob_size > 1) && (curand_uniform(&rng) < restart_prob_data[step_idx])) {
        break;
      } else if ((restart_prob_size == 1) && (curand_uniform(&rng) < restart_prob_data[0])) {
        break;
      }
      ++traces_data_ptr; ++eids_data_ptr;
      curr = pick;
    }
    for (; step_idx < max_num_steps; ++step_idx) {
      *(traces_data_ptr++) = -1;
      *(eids_data_ptr++) = -1;
    }
    idx += BLOCK_SIZE;
  }
}

168
169
170
}  // namespace

// random walk for uniform choice
171
template<DGLDeviceType XPU, typename IdType>
172
173
174
175
176
177
178
std::pair<IdArray, IdArray> RandomWalkUniform(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    FloatArray restart_prob) {
  const int64_t max_num_steps = metapath->shape[0];
  const IdType *metapath_data = static_cast<IdType *>(metapath->data);
179
180
  const int64_t begin_ntype = hg->meta_graph()->FindEdge(metapath_data[0]).first;
  const int64_t max_nodes = hg->NumVertices(begin_ntype);
181
  int64_t num_etypes = hg->NumEdgeTypes();
182
  auto ctx = seeds->ctx;
183
184
185
186
187

  const IdType *seed_data = static_cast<const IdType*>(seeds->data);
  CHECK(seeds->ndim == 1) << "seeds shape is not one dimension.";
  const int64_t num_seeds = seeds->shape[0];
  int64_t trace_length = max_num_steps + 1;
188
189
  IdArray traces = IdArray::Empty({num_seeds, trace_length}, seeds->dtype, ctx);
  IdArray eids = IdArray::Empty({num_seeds, max_num_steps}, seeds->dtype, ctx);
190
191
192
  IdType *traces_data = traces.Ptr<IdType>();
  IdType *eids_data = eids.Ptr<IdType>();

193
  std::vector<GraphKernelData<IdType>> h_graphs(num_etypes);
194
195
196
197
198
199
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const CSRMatrix &csr = hg->GetCSRMatrix(etype);
    h_graphs[etype].in_ptr  = static_cast<const IdType*>(csr.indptr->data);
    h_graphs[etype].in_cols = static_cast<const IdType*>(csr.indices->data);
    h_graphs[etype].data = (CSRHasData(csr) ? static_cast<const IdType*>(csr.data->data) : nullptr);
  }
200
  // use cuda stream from local thread
201
  cudaStream_t stream = runtime::getCurrentCUDAStream();
202
203
204
205
  auto device = DeviceAPI::Get(ctx);
  auto d_graphs = static_cast<GraphKernelData<IdType>*>(
      device->AllocWorkspace(ctx, (num_etypes) * sizeof(GraphKernelData<IdType>)));
  // copy graph metadata pointers to GPU
206
  device->CopyDataFromTo(h_graphs.data(), 0, d_graphs, 0,
207
      (num_etypes) * sizeof(GraphKernelData<IdType>),
208
      DGLContext{kDGLCPU, 0},
209
      ctx,
210
      hg->GetCSRMatrix(0).indptr->dtype);
211
212
213
  // copy metapath to GPU
  auto d_metapath = metapath.CopyTo(ctx);
  const IdType *d_metapath_data = static_cast<IdType *>(d_metapath->data);
214
215
216
217
218
219
220

  constexpr int BLOCK_SIZE = 256;
  constexpr int TILE_SIZE = BLOCK_SIZE * 4;
  dim3 block(256);
  dim3 grid((num_seeds + TILE_SIZE - 1) / TILE_SIZE);
  const uint64_t random_seed = RandomEngine::ThreadLocal()->RandInt(1000000000);
  ATEN_FLOAT_TYPE_SWITCH(restart_prob->dtype, FloatType, "random walk GPU kernel", {
221
    CHECK(restart_prob->ctx.device_type == kDGLCUDA) << "restart prob should be in GPU.";
222
223
224
    CHECK(restart_prob->ndim == 1) << "restart prob dimension should be 1.";
    const FloatType *restart_prob_data = restart_prob.Ptr<FloatType>();
    const int64_t restart_prob_size = restart_prob->shape[0];
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    CUDA_KERNEL_CALL(
      (_RandomWalkKernel<IdType, FloatType, BLOCK_SIZE, TILE_SIZE>),
      grid, block, 0, stream,
      random_seed,
      seed_data,
      num_seeds,
      d_metapath_data,
      max_num_steps,
      d_graphs,
      restart_prob_data,
      restart_prob_size,
      max_nodes,
      traces_data,
      eids_data);
239
240
241
242
243
244
  });

  device->FreeWorkspace(ctx, d_graphs);
  return std::make_pair(traces, eids);
}

245
246
247
248
/** 
 * \brief Random walk for biased choice. We use inverse transform sampling to
 * choose the next step.
 */
249
template <DGLDeviceType XPU, typename FloatType, typename IdType>
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
std::pair<IdArray, IdArray> RandomWalkBiased(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob) {
  const int64_t max_num_steps = metapath->shape[0];
  const IdType *metapath_data = static_cast<IdType *>(metapath->data);
  const int64_t begin_ntype = hg->meta_graph()->FindEdge(metapath_data[0]).first;
  const int64_t max_nodes = hg->NumVertices(begin_ntype);
  int64_t num_etypes = hg->NumEdgeTypes();
  auto ctx = seeds->ctx;

  const IdType *seed_data = static_cast<const IdType*>(seeds->data);
  CHECK(seeds->ndim == 1) << "seeds shape is not one dimension.";
  const int64_t num_seeds = seeds->shape[0];
  int64_t trace_length = max_num_steps + 1;
  IdArray traces = IdArray::Empty({num_seeds, trace_length}, seeds->dtype, ctx);
  IdArray eids = IdArray::Empty({num_seeds, max_num_steps}, seeds->dtype, ctx);
  IdType *traces_data = traces.Ptr<IdType>();
  IdType *eids_data = eids.Ptr<IdType>();

272
  cudaStream_t stream = runtime::getCurrentCUDAStream();
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  auto device = DeviceAPI::Get(ctx);
  // new probs and prob sums pointers
  assert(num_etypes == static_cast<int64_t>(prob.size()));
  std::unique_ptr<FloatType *[]> probs(new FloatType *[prob.size()]);
  std::unique_ptr<FloatType *[]> prob_sums(new FloatType *[prob.size()]);
  std::vector<FloatArray> prob_sums_arr;
  prob_sums_arr.reserve(prob.size());

  // graphs
  std::vector<GraphKernelData<IdType>> h_graphs(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const CSRMatrix &csr = hg->GetCSRMatrix(etype);
    h_graphs[etype].in_ptr  = static_cast<const IdType*>(csr.indptr->data);
    h_graphs[etype].in_cols = static_cast<const IdType*>(csr.indices->data);
    h_graphs[etype].data = (CSRHasData(csr) ? static_cast<const IdType*>(csr.data->data) : nullptr);

    int64_t num_segments = csr.indptr->shape[0] - 1;
    // will handle empty probs in the kernel
    if (IsNullArray(prob[etype])) {
      probs[etype] = nullptr;
      prob_sums[etype] = nullptr;
      continue;
    }
    probs[etype] = prob[etype].Ptr<FloatType>();
    prob_sums_arr.push_back(FloatArray::Empty({num_segments}, prob[etype]->dtype, ctx));
    prob_sums[etype] = prob_sums_arr[etype].Ptr<FloatType>();

    // calculate the sum of the neighbor weights
    const IdType *d_offsets = static_cast<const IdType*>(csr.indptr->data);
    size_t temp_storage_size = 0;
    CUDA_CALL(cub::DeviceSegmentedReduce::Sum(nullptr, temp_storage_size,
        probs[etype],
        prob_sums[etype],
        num_segments,
        d_offsets,
308
        d_offsets + 1, stream));
309
310
311
312
313
314
    void *temp_storage = device->AllocWorkspace(ctx, temp_storage_size);
    CUDA_CALL(cub::DeviceSegmentedReduce::Sum(temp_storage, temp_storage_size,
        probs[etype],
        prob_sums[etype],
        num_segments,
        d_offsets,
315
        d_offsets + 1, stream));
316
317
318
319
320
321
322
323
    device->FreeWorkspace(ctx, temp_storage);
  }

  // copy graph metadata pointers to GPU
  auto d_graphs = static_cast<GraphKernelData<IdType>*>(
      device->AllocWorkspace(ctx, (num_etypes) * sizeof(GraphKernelData<IdType>)));
  device->CopyDataFromTo(h_graphs.data(), 0, d_graphs, 0,
      (num_etypes) * sizeof(GraphKernelData<IdType>),
324
      DGLContext{kDGLCPU, 0},
325
      ctx,
326
      hg->GetCSRMatrix(0).indptr->dtype);
327
328
329
330
331
  // copy probs pointers to GPU
  const FloatType **probs_dev = static_cast<const FloatType **>(
      device->AllocWorkspace(ctx, num_etypes * sizeof(FloatType *)));
  device->CopyDataFromTo(probs.get(), 0, probs_dev, 0,
      (num_etypes) * sizeof(FloatType *),
332
      DGLContext{kDGLCPU, 0},
333
      ctx,
334
      prob[0]->dtype);
335
336
337
338
339
  // copy probs_sum pointers to GPU
  const FloatType **prob_sums_dev = static_cast<const FloatType **>(
      device->AllocWorkspace(ctx, num_etypes * sizeof(FloatType *)));
  device->CopyDataFromTo(prob_sums.get(), 0, prob_sums_dev, 0,
      (num_etypes) * sizeof(FloatType *),
340
      DGLContext{kDGLCPU, 0},
341
      ctx,
342
      prob[0]->dtype);
343
344
345
346
347
348
349
350
351
  // copy metapath to GPU
  auto d_metapath = metapath.CopyTo(ctx);
  const IdType *d_metapath_data = static_cast<IdType *>(d_metapath->data);

  constexpr int BLOCK_SIZE = 256;
  constexpr int TILE_SIZE = BLOCK_SIZE * 4;
  dim3 block(256);
  dim3 grid((num_seeds + TILE_SIZE - 1) / TILE_SIZE);
  const uint64_t random_seed = RandomEngine::ThreadLocal()->RandInt(1000000000);
352
  CHECK(restart_prob->ctx.device_type == kDGLCUDA) << "restart prob should be in GPU.";
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
  CHECK(restart_prob->ndim == 1) << "restart prob dimension should be 1.";
  const FloatType *restart_prob_data = restart_prob.Ptr<FloatType>();
  const int64_t restart_prob_size = restart_prob->shape[0];
  CUDA_KERNEL_CALL(
    (_RandomWalkBiasedKernel<IdType, FloatType, BLOCK_SIZE, TILE_SIZE>),
    grid, block, 0, stream,
    random_seed,
    seed_data,
    num_seeds,
    d_metapath_data,
    max_num_steps,
    d_graphs,
    probs_dev,
    prob_sums_dev,
    restart_prob_data,
    restart_prob_size,
    max_nodes,
    traces_data,
    eids_data);

  device->FreeWorkspace(ctx, d_graphs);
  device->FreeWorkspace(ctx, probs_dev);
  device->FreeWorkspace(ctx, prob_sums_dev);
  return std::make_pair(traces, eids);
}

379
template<DGLDeviceType XPU, typename IdType>
380
381
382
383
384
385
std::pair<IdArray, IdArray> RandomWalk(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob) {

386
  bool isUniform = true;
387
388
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
389
390
      isUniform = false;
      break;
391
392
393
394
    }
  }

  auto restart_prob = NDArray::Empty(
395
      {0}, DGLDataType{kDGLFloat, 32, 1}, DGLContext{XPU, 0});
396
397
398
399
400
401
402
403
404
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(hg, seeds, metapath, prob, restart_prob);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
  }
405
406
}

407
template<DGLDeviceType XPU, typename IdType>
408
409
410
411
412
413
414
std::pair<IdArray, IdArray> RandomWalkWithRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob) {

415
  bool isUniform = true;
416
417
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
418
419
      isUniform = false;
      break;
420
421
    }
  }
422

423
  auto device_ctx = seeds->ctx;
424
  auto restart_prob_array = NDArray::Empty(
425
      {1}, DGLDataType{kDGLFloat, 64, 1}, device_ctx);
426
427
  auto device = dgl::runtime::DeviceAPI::Get(device_ctx);

428
  // use cuda stream from local thread
429
  cudaStream_t stream = runtime::getCurrentCUDAStream();
430
431
432
  device->CopyDataFromTo(
      &restart_prob, 0, restart_prob_array.Ptr<double>(), 0,
      sizeof(double),
433
      DGLContext{kDGLCPU, 0}, device_ctx,
434
      restart_prob_array->dtype);
435
436
  device->StreamSync(device_ctx, stream);

437
438
439
440
441
442
443
444
445
446
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(
          hg, seeds, metapath, prob, restart_prob_array);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob_array);
  }
447
448
}

449
template<DGLDeviceType XPU, typename IdType>
450
451
452
453
454
455
456
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob) {

457
  bool isUniform = true;
458
459
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
460
461
      isUniform = false;
      break;
462
463
464
    }
  }

465
466
467
468
469
470
471
472
473
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(hg, seeds, metapath, prob, restart_prob);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
  }
474
475
}

476
template<DGLDeviceType XPU, typename IdxType>
477
478
479
480
481
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k) {
482
  CHECK(src->ctx.device_type == kDGLCUDA) <<
483
484
485
486
487
    "IdArray needs be on GPU!";
  const IdxType* src_data = src.Ptr<IdxType>();
  const IdxType* dst_data = dst.Ptr<IdxType>();
  const int64_t num_dst_nodes = (dst->shape[0] / num_samples_per_node);
  auto ctx = src->ctx;
488
  // use cuda stream from local thread
489
  cudaStream_t stream = runtime::getCurrentCUDAStream();
490
491
492
493
494
495
496
497
  auto frequency_hashmap = FrequencyHashmap<IdxType>(num_dst_nodes,
      num_samples_per_node, ctx, stream);
  auto ret = frequency_hashmap.Topk(src_data, dst_data, src->dtype,
      src->shape[0], num_samples_per_node, k);
  return ret;
}

template
498
std::pair<IdArray, IdArray> RandomWalk<kDGLCUDA, int32_t>(
499
500
501
502
503
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);
template
504
std::pair<IdArray, IdArray> RandomWalk<kDGLCUDA, int64_t>(
505
506
507
508
509
510
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);

template
511
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDGLCUDA, int32_t>(
512
513
514
515
516
517
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);
template
518
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDGLCUDA, int64_t>(
519
520
521
522
523
524
525
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);

template
526
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDGLCUDA, int32_t>(
527
528
529
530
531
532
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);
template
533
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDGLCUDA, int64_t>(
534
535
536
537
538
539
540
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);

template
541
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDGLCUDA, int32_t>(
542
543
544
545
546
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);
template
547
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDGLCUDA, int64_t>(
548
549
550
551
552
553
554
555
556
557
558
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);


};  // namespace impl

};  // namespace sampling

};  // namespace dgl