randomwalk_gpu.cu 10.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/*!
 *  Copyright (c) 2021 by Contributors
 * \file graph/sampling/randomwalk_gpu.cu
 * \brief DGL sampler 
 */

#include <dgl/array.h>
#include <dgl/base_heterograph.h>
#include <dgl/runtime/device_api.h>
#include <dgl/random.h>
#include <curand_kernel.h>
#include <vector>
#include <utility>
#include <tuple>

16
#include "../../../runtime/cuda/cuda_common.h"
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#include "frequency_hashmap.cuh"

namespace dgl {

using namespace dgl::runtime;
using namespace dgl::aten;

namespace sampling {

namespace impl {

namespace {

template<typename IdType>
struct GraphKernelData {
  const IdType *in_ptr;
  const IdType *in_cols;
  const IdType *data;
};

template<typename IdType, typename FloatType, int BLOCK_SIZE, int TILE_SIZE>
__global__ void _RandomWalkKernel(
    const uint64_t rand_seed, const IdType *seed_data, const int64_t num_seeds,
    const IdType* metapath_data, const uint64_t max_num_steps,
    const GraphKernelData<IdType>* graphs,
    const FloatType* restart_prob_data,
    const int64_t restart_prob_size,
44
    const int64_t max_nodes,
45
46
47
48
49
50
51
52
53
54
55
56
57
    IdType *out_traces_data,
    IdType *out_eids_data) {
  assert(BLOCK_SIZE == blockDim.x);
  int64_t idx = blockIdx.x * TILE_SIZE + threadIdx.x;
  int64_t last_idx = min(static_cast<int64_t>(blockIdx.x + 1) * TILE_SIZE, num_seeds);
  int64_t trace_length = (max_num_steps + 1);
  curandState rng;
  // reference:
  //     https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
  curand_init(rand_seed + idx, 0, 0, &rng);

  while (idx < last_idx) {
    IdType curr = seed_data[idx];
58
    assert(curr < max_nodes);
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    IdType *traces_data_ptr = &out_traces_data[idx * trace_length];
    IdType *eids_data_ptr = &out_eids_data[idx * max_num_steps];
    *(traces_data_ptr++) = curr;
    int64_t step_idx;
    for (step_idx = 0; step_idx < max_num_steps; ++step_idx) {
      IdType metapath_id = metapath_data[step_idx];
      const GraphKernelData<IdType> &graph = graphs[metapath_id];
      const int64_t in_row_start = graph.in_ptr[curr];
      const int64_t deg = graph.in_ptr[curr + 1] - graph.in_ptr[curr];
      if (deg == 0) {  // the degree is zero
        break;
      }
      const int64_t num = curand(&rng) % deg;
      IdType pick = graph.in_cols[in_row_start + num];
      IdType eid = (graph.data? graph.data[in_row_start + num] : in_row_start + num);
      *traces_data_ptr = pick;
      *eids_data_ptr = eid;
      if ((restart_prob_size > 1) && (curand_uniform(&rng) < restart_prob_data[step_idx])) {
        break;
      } else if ((restart_prob_size == 1) && (curand_uniform(&rng) < restart_prob_data[0])) {
        break;
      }
      ++traces_data_ptr; ++eids_data_ptr;
      curr = pick;
    }
    for (; step_idx < max_num_steps; ++step_idx) {
      *(traces_data_ptr++) = -1;
      *(eids_data_ptr++) = -1;
    }
    idx += BLOCK_SIZE;
  }
}

}  // namespace

// random walk for uniform choice
template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkUniform(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    FloatArray restart_prob) {
  const int64_t max_num_steps = metapath->shape[0];
  const IdType *metapath_data = static_cast<IdType *>(metapath->data);
103
104
  const int64_t begin_ntype = hg->meta_graph()->FindEdge(metapath_data[0]).first;
  const int64_t max_nodes = hg->NumVertices(begin_ntype);
105
  int64_t num_etypes = hg->NumEdgeTypes();
106
  auto ctx = seeds->ctx;
107
108
109
110
111

  const IdType *seed_data = static_cast<const IdType*>(seeds->data);
  CHECK(seeds->ndim == 1) << "seeds shape is not one dimension.";
  const int64_t num_seeds = seeds->shape[0];
  int64_t trace_length = max_num_steps + 1;
112
113
  IdArray traces = IdArray::Empty({num_seeds, trace_length}, seeds->dtype, ctx);
  IdArray eids = IdArray::Empty({num_seeds, max_num_steps}, seeds->dtype, ctx);
114
115
116
  IdType *traces_data = traces.Ptr<IdType>();
  IdType *eids_data = eids.Ptr<IdType>();

117
  std::vector<GraphKernelData<IdType>> h_graphs(num_etypes);
118
119
120
121
122
123
124
125
126
127
128
129
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const CSRMatrix &csr = hg->GetCSRMatrix(etype);
    h_graphs[etype].in_ptr  = static_cast<const IdType*>(csr.indptr->data);
    h_graphs[etype].in_cols = static_cast<const IdType*>(csr.indices->data);
    h_graphs[etype].data = (CSRHasData(csr) ? static_cast<const IdType*>(csr.data->data) : nullptr);
  }
  // use default stream
  cudaStream_t stream = 0;
  auto device = DeviceAPI::Get(ctx);
  auto d_graphs = static_cast<GraphKernelData<IdType>*>(
      device->AllocWorkspace(ctx, (num_etypes) * sizeof(GraphKernelData<IdType>)));
  // copy graph metadata pointers to GPU
130
  device->CopyDataFromTo(h_graphs.data(), 0, d_graphs, 0,
131
132
133
134
135
      (num_etypes) * sizeof(GraphKernelData<IdType>),
      DGLContext{kDLCPU, 0},
      ctx,
      hg->GetCSRMatrix(0).indptr->dtype,
      stream);
136
137
138
  // copy metapath to GPU
  auto d_metapath = metapath.CopyTo(ctx);
  const IdType *d_metapath_data = static_cast<IdType *>(d_metapath->data);
139
140
141
142
143
144
145
146
147
148
149

  constexpr int BLOCK_SIZE = 256;
  constexpr int TILE_SIZE = BLOCK_SIZE * 4;
  dim3 block(256);
  dim3 grid((num_seeds + TILE_SIZE - 1) / TILE_SIZE);
  const uint64_t random_seed = RandomEngine::ThreadLocal()->RandInt(1000000000);
  ATEN_FLOAT_TYPE_SWITCH(restart_prob->dtype, FloatType, "random walk GPU kernel", {
    CHECK(restart_prob->ctx.device_type == kDLGPU) << "restart prob should be in GPU.";
    CHECK(restart_prob->ndim == 1) << "restart prob dimension should be 1.";
    const FloatType *restart_prob_data = restart_prob.Ptr<FloatType>();
    const int64_t restart_prob_size = restart_prob->shape[0];
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    CUDA_KERNEL_CALL(
      (_RandomWalkKernel<IdType, FloatType, BLOCK_SIZE, TILE_SIZE>),
      grid, block, 0, stream,
      random_seed,
      seed_data,
      num_seeds,
      d_metapath_data,
      max_num_steps,
      d_graphs,
      restart_prob_data,
      restart_prob_size,
      max_nodes,
      traces_data,
      eids_data);
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
  });

  device->FreeWorkspace(ctx, d_graphs);
  return std::make_pair(traces, eids);
}

template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalk(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob) {

  // not support no-uniform choice now
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
      LOG(FATAL) << "Non-uniform choice is not supported in GPU.";
    }
  }

  auto restart_prob = NDArray::Empty(
      {0}, DLDataType{kDLFloat, 32, 1}, DGLContext{XPU, 0});
  return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
}

template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkWithRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob) {

  // not support no-uniform choice now
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
      LOG(FATAL) << "Non-uniform choice is not supported in GPU.";
    }
  }
203
  auto device_ctx = seeds->ctx;
204
  auto restart_prob_array = NDArray::Empty(
205
      {1}, DLDataType{kDLFloat, 64, 1}, device_ctx);
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
  auto device = dgl::runtime::DeviceAPI::Get(device_ctx);

  // use default stream
  cudaStream_t stream = 0;
  device->CopyDataFromTo(
      &restart_prob, 0, restart_prob_array.Ptr<double>(), 0,
      sizeof(double),
      DGLContext{kDLCPU, 0}, device_ctx,
      restart_prob_array->dtype, stream);
  device->StreamSync(device_ctx, stream);

  return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob_array);
}

template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob) {

  // not support no-uniform choice now
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
      LOG(FATAL) << "Non-uniform choice is not supported in GPU.";
    }
  }

  return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
}

template<DLDeviceType XPU, typename IdxType>
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k) {
  CHECK(src->ctx.device_type == kDLGPU) <<
    "IdArray needs be on GPU!";
  const IdxType* src_data = src.Ptr<IdxType>();
  const IdxType* dst_data = dst.Ptr<IdxType>();
  const int64_t num_dst_nodes = (dst->shape[0] / num_samples_per_node);
  auto ctx = src->ctx;
  // use default stream
  cudaStream_t stream = 0;
  auto frequency_hashmap = FrequencyHashmap<IdxType>(num_dst_nodes,
      num_samples_per_node, ctx, stream);
  auto ret = frequency_hashmap.Topk(src_data, dst_data, src->dtype,
      src->shape[0], num_samples_per_node, k);
  return ret;
}

template
std::pair<IdArray, IdArray> RandomWalk<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);
template
std::pair<IdArray, IdArray> RandomWalk<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);

template
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);
template
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);

template
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);
template
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);

template
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDLGPU, int32_t>(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);
template
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDLGPU, int64_t>(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);


};  // namespace impl

};  // namespace sampling

};  // namespace dgl