randomwalk_gpu.cu 19 KB
Newer Older
1
/*!
2
 *  Copyright (c) 2021-2022 by Contributors
3
 * \file graph/sampling/randomwalk_gpu.cu
4
 * \brief CUDA random walk sampleing
5
6
7
8
9
10
11
12
13
14
15
 */

#include <dgl/array.h>
#include <dgl/base_heterograph.h>
#include <dgl/runtime/device_api.h>
#include <dgl/random.h>
#include <curand_kernel.h>
#include <vector>
#include <utility>
#include <tuple>

16
#include "../../../array/cuda/dgl_cub.cuh"
17
#include "../../../runtime/cuda/cuda_common.h"
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#include "frequency_hashmap.cuh"

namespace dgl {

using namespace dgl::runtime;
using namespace dgl::aten;

namespace sampling {

namespace impl {

namespace {

template<typename IdType>
struct GraphKernelData {
  const IdType *in_ptr;
  const IdType *in_cols;
  const IdType *data;
};

template<typename IdType, typename FloatType, int BLOCK_SIZE, int TILE_SIZE>
__global__ void _RandomWalkKernel(
    const uint64_t rand_seed, const IdType *seed_data, const int64_t num_seeds,
    const IdType* metapath_data, const uint64_t max_num_steps,
    const GraphKernelData<IdType>* graphs,
    const FloatType* restart_prob_data,
    const int64_t restart_prob_size,
45
    const int64_t max_nodes,
46
47
48
49
50
51
52
53
54
55
56
57
58
    IdType *out_traces_data,
    IdType *out_eids_data) {
  assert(BLOCK_SIZE == blockDim.x);
  int64_t idx = blockIdx.x * TILE_SIZE + threadIdx.x;
  int64_t last_idx = min(static_cast<int64_t>(blockIdx.x + 1) * TILE_SIZE, num_seeds);
  int64_t trace_length = (max_num_steps + 1);
  curandState rng;
  // reference:
  //     https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
  curand_init(rand_seed + idx, 0, 0, &rng);

  while (idx < last_idx) {
    IdType curr = seed_data[idx];
59
    assert(curr < max_nodes);
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    IdType *traces_data_ptr = &out_traces_data[idx * trace_length];
    IdType *eids_data_ptr = &out_eids_data[idx * max_num_steps];
    *(traces_data_ptr++) = curr;
    int64_t step_idx;
    for (step_idx = 0; step_idx < max_num_steps; ++step_idx) {
      IdType metapath_id = metapath_data[step_idx];
      const GraphKernelData<IdType> &graph = graphs[metapath_id];
      const int64_t in_row_start = graph.in_ptr[curr];
      const int64_t deg = graph.in_ptr[curr + 1] - graph.in_ptr[curr];
      if (deg == 0) {  // the degree is zero
        break;
      }
      const int64_t num = curand(&rng) % deg;
      IdType pick = graph.in_cols[in_row_start + num];
      IdType eid = (graph.data? graph.data[in_row_start + num] : in_row_start + num);
      *traces_data_ptr = pick;
      *eids_data_ptr = eid;
      if ((restart_prob_size > 1) && (curand_uniform(&rng) < restart_prob_data[step_idx])) {
        break;
      } else if ((restart_prob_size == 1) && (curand_uniform(&rng) < restart_prob_data[0])) {
        break;
      }
      ++traces_data_ptr; ++eids_data_ptr;
      curr = pick;
    }
    for (; step_idx < max_num_steps; ++step_idx) {
      *(traces_data_ptr++) = -1;
      *(eids_data_ptr++) = -1;
    }
    idx += BLOCK_SIZE;
  }
}

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
template <typename IdType, typename FloatType, int BLOCK_SIZE, int TILE_SIZE>
__global__ void _RandomWalkBiasedKernel(
    const uint64_t rand_seed,
    const IdType *seed_data,
    const int64_t num_seeds,
    const IdType *metapath_data,
    const uint64_t max_num_steps,
    const GraphKernelData<IdType> *graphs,
    const FloatType **probs,
    const FloatType **prob_sums,
    const FloatType *restart_prob_data,
    const int64_t restart_prob_size,
    const int64_t max_nodes,
    IdType *out_traces_data,
    IdType *out_eids_data) {
  assert(BLOCK_SIZE == blockDim.x);
  int64_t idx = blockIdx.x * TILE_SIZE + threadIdx.x;
  int64_t last_idx = min(static_cast<int64_t>(blockIdx.x + 1) * TILE_SIZE, num_seeds);
  int64_t trace_length = (max_num_steps + 1);
  curandState rng;
  // reference:
  //     https://docs.nvidia.com/cuda/curand/device-api-overview.html#performance-notes
  curand_init(rand_seed + idx, 0, 0, &rng);

  while (idx < last_idx) {
    IdType curr = seed_data[idx];
    assert(curr < max_nodes);
    IdType *traces_data_ptr = &out_traces_data[idx * trace_length];
    IdType *eids_data_ptr = &out_eids_data[idx * max_num_steps];
    *(traces_data_ptr++) = curr;
    int64_t step_idx;
    for (step_idx = 0; step_idx < max_num_steps; ++step_idx) {
      IdType metapath_id = metapath_data[step_idx];
      const GraphKernelData<IdType> &graph = graphs[metapath_id];
      const int64_t in_row_start = graph.in_ptr[curr];
      const int64_t deg = graph.in_ptr[curr + 1] - graph.in_ptr[curr];
      if (deg == 0) {  // the degree is zero
        break;
      }

      // randomly select by weight
      const FloatType *prob_sum = prob_sums[metapath_id];
      const FloatType *prob = probs[metapath_id];
      int64_t num;
      if (prob == nullptr) {
        num = curand(&rng) % deg;
      } else {
        auto rnd_sum_w = prob_sum[curr] * curand_uniform(&rng);
        FloatType sum_w{0.};
        for (num = 0; num < deg; ++num) {
          sum_w += prob[in_row_start + num];
          if (sum_w >= rnd_sum_w) break;
        }
      }

      IdType pick = graph.in_cols[in_row_start + num];
      IdType eid = (graph.data? graph.data[in_row_start + num] : in_row_start + num);
      *traces_data_ptr = pick;
      *eids_data_ptr = eid;
      if ((restart_prob_size > 1) && (curand_uniform(&rng) < restart_prob_data[step_idx])) {
        break;
      } else if ((restart_prob_size == 1) && (curand_uniform(&rng) < restart_prob_data[0])) {
        break;
      }
      ++traces_data_ptr; ++eids_data_ptr;
      curr = pick;
    }
    for (; step_idx < max_num_steps; ++step_idx) {
      *(traces_data_ptr++) = -1;
      *(eids_data_ptr++) = -1;
    }
    idx += BLOCK_SIZE;
  }
}

168
169
170
171
172
173
174
175
176
177
178
}  // namespace

// random walk for uniform choice
template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkUniform(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    FloatArray restart_prob) {
  const int64_t max_num_steps = metapath->shape[0];
  const IdType *metapath_data = static_cast<IdType *>(metapath->data);
179
180
  const int64_t begin_ntype = hg->meta_graph()->FindEdge(metapath_data[0]).first;
  const int64_t max_nodes = hg->NumVertices(begin_ntype);
181
  int64_t num_etypes = hg->NumEdgeTypes();
182
  auto ctx = seeds->ctx;
183
184
185
186
187

  const IdType *seed_data = static_cast<const IdType*>(seeds->data);
  CHECK(seeds->ndim == 1) << "seeds shape is not one dimension.";
  const int64_t num_seeds = seeds->shape[0];
  int64_t trace_length = max_num_steps + 1;
188
189
  IdArray traces = IdArray::Empty({num_seeds, trace_length}, seeds->dtype, ctx);
  IdArray eids = IdArray::Empty({num_seeds, max_num_steps}, seeds->dtype, ctx);
190
191
192
  IdType *traces_data = traces.Ptr<IdType>();
  IdType *eids_data = eids.Ptr<IdType>();

193
  std::vector<GraphKernelData<IdType>> h_graphs(num_etypes);
194
195
196
197
198
199
200
201
202
203
204
205
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const CSRMatrix &csr = hg->GetCSRMatrix(etype);
    h_graphs[etype].in_ptr  = static_cast<const IdType*>(csr.indptr->data);
    h_graphs[etype].in_cols = static_cast<const IdType*>(csr.indices->data);
    h_graphs[etype].data = (CSRHasData(csr) ? static_cast<const IdType*>(csr.data->data) : nullptr);
  }
  // use default stream
  cudaStream_t stream = 0;
  auto device = DeviceAPI::Get(ctx);
  auto d_graphs = static_cast<GraphKernelData<IdType>*>(
      device->AllocWorkspace(ctx, (num_etypes) * sizeof(GraphKernelData<IdType>)));
  // copy graph metadata pointers to GPU
206
  device->CopyDataFromTo(h_graphs.data(), 0, d_graphs, 0,
207
208
209
210
211
      (num_etypes) * sizeof(GraphKernelData<IdType>),
      DGLContext{kDLCPU, 0},
      ctx,
      hg->GetCSRMatrix(0).indptr->dtype,
      stream);
212
213
214
  // copy metapath to GPU
  auto d_metapath = metapath.CopyTo(ctx);
  const IdType *d_metapath_data = static_cast<IdType *>(d_metapath->data);
215
216
217
218
219
220
221
222
223
224
225

  constexpr int BLOCK_SIZE = 256;
  constexpr int TILE_SIZE = BLOCK_SIZE * 4;
  dim3 block(256);
  dim3 grid((num_seeds + TILE_SIZE - 1) / TILE_SIZE);
  const uint64_t random_seed = RandomEngine::ThreadLocal()->RandInt(1000000000);
  ATEN_FLOAT_TYPE_SWITCH(restart_prob->dtype, FloatType, "random walk GPU kernel", {
    CHECK(restart_prob->ctx.device_type == kDLGPU) << "restart prob should be in GPU.";
    CHECK(restart_prob->ndim == 1) << "restart prob dimension should be 1.";
    const FloatType *restart_prob_data = restart_prob.Ptr<FloatType>();
    const int64_t restart_prob_size = restart_prob->shape[0];
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    CUDA_KERNEL_CALL(
      (_RandomWalkKernel<IdType, FloatType, BLOCK_SIZE, TILE_SIZE>),
      grid, block, 0, stream,
      random_seed,
      seed_data,
      num_seeds,
      d_metapath_data,
      max_num_steps,
      d_graphs,
      restart_prob_data,
      restart_prob_size,
      max_nodes,
      traces_data,
      eids_data);
240
241
242
243
244
245
  });

  device->FreeWorkspace(ctx, d_graphs);
  return std::make_pair(traces, eids);
}

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/** 
 * \brief Random walk for biased choice. We use inverse transform sampling to
 * choose the next step.
 */
template <DLDeviceType XPU, typename FloatType, typename IdType>
std::pair<IdArray, IdArray> RandomWalkBiased(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob) {
  const int64_t max_num_steps = metapath->shape[0];
  const IdType *metapath_data = static_cast<IdType *>(metapath->data);
  const int64_t begin_ntype = hg->meta_graph()->FindEdge(metapath_data[0]).first;
  const int64_t max_nodes = hg->NumVertices(begin_ntype);
  int64_t num_etypes = hg->NumEdgeTypes();
  auto ctx = seeds->ctx;

  const IdType *seed_data = static_cast<const IdType*>(seeds->data);
  CHECK(seeds->ndim == 1) << "seeds shape is not one dimension.";
  const int64_t num_seeds = seeds->shape[0];
  int64_t trace_length = max_num_steps + 1;
  IdArray traces = IdArray::Empty({num_seeds, trace_length}, seeds->dtype, ctx);
  IdArray eids = IdArray::Empty({num_seeds, max_num_steps}, seeds->dtype, ctx);
  IdType *traces_data = traces.Ptr<IdType>();
  IdType *eids_data = eids.Ptr<IdType>();

  cudaStream_t stream = 0;
  auto device = DeviceAPI::Get(ctx);
  // new probs and prob sums pointers
  assert(num_etypes == static_cast<int64_t>(prob.size()));
  std::unique_ptr<FloatType *[]> probs(new FloatType *[prob.size()]);
  std::unique_ptr<FloatType *[]> prob_sums(new FloatType *[prob.size()]);
  std::vector<FloatArray> prob_sums_arr;
  prob_sums_arr.reserve(prob.size());

  // graphs
  std::vector<GraphKernelData<IdType>> h_graphs(num_etypes);
  for (int64_t etype = 0; etype < num_etypes; ++etype) {
    const CSRMatrix &csr = hg->GetCSRMatrix(etype);
    h_graphs[etype].in_ptr  = static_cast<const IdType*>(csr.indptr->data);
    h_graphs[etype].in_cols = static_cast<const IdType*>(csr.indices->data);
    h_graphs[etype].data = (CSRHasData(csr) ? static_cast<const IdType*>(csr.data->data) : nullptr);

    int64_t num_segments = csr.indptr->shape[0] - 1;
    // will handle empty probs in the kernel
    if (IsNullArray(prob[etype])) {
      probs[etype] = nullptr;
      prob_sums[etype] = nullptr;
      continue;
    }
    probs[etype] = prob[etype].Ptr<FloatType>();
    prob_sums_arr.push_back(FloatArray::Empty({num_segments}, prob[etype]->dtype, ctx));
    prob_sums[etype] = prob_sums_arr[etype].Ptr<FloatType>();

    // calculate the sum of the neighbor weights
    const IdType *d_offsets = static_cast<const IdType*>(csr.indptr->data);
    size_t temp_storage_size = 0;
    CUDA_CALL(cub::DeviceSegmentedReduce::Sum(nullptr, temp_storage_size,
        probs[etype],
        prob_sums[etype],
        num_segments,
        d_offsets,
        d_offsets + 1));
    void *temp_storage = device->AllocWorkspace(ctx, temp_storage_size);
    CUDA_CALL(cub::DeviceSegmentedReduce::Sum(temp_storage, temp_storage_size,
        probs[etype],
        prob_sums[etype],
        num_segments,
        d_offsets,
        d_offsets + 1));
    device->FreeWorkspace(ctx, temp_storage);
  }

  // copy graph metadata pointers to GPU
  auto d_graphs = static_cast<GraphKernelData<IdType>*>(
      device->AllocWorkspace(ctx, (num_etypes) * sizeof(GraphKernelData<IdType>)));
  device->CopyDataFromTo(h_graphs.data(), 0, d_graphs, 0,
      (num_etypes) * sizeof(GraphKernelData<IdType>),
      DGLContext{kDLCPU, 0},
      ctx,
      hg->GetCSRMatrix(0).indptr->dtype,
      stream);
  // copy probs pointers to GPU
  const FloatType **probs_dev = static_cast<const FloatType **>(
      device->AllocWorkspace(ctx, num_etypes * sizeof(FloatType *)));
  device->CopyDataFromTo(probs.get(), 0, probs_dev, 0,
      (num_etypes) * sizeof(FloatType *),
      DGLContext{kDLCPU, 0},
      ctx,
      prob[0]->dtype,
      stream);
  // copy probs_sum pointers to GPU
  const FloatType **prob_sums_dev = static_cast<const FloatType **>(
      device->AllocWorkspace(ctx, num_etypes * sizeof(FloatType *)));
  device->CopyDataFromTo(prob_sums.get(), 0, prob_sums_dev, 0,
      (num_etypes) * sizeof(FloatType *),
      DGLContext{kDLCPU, 0},
      ctx,
      prob[0]->dtype,
      stream);
  // copy metapath to GPU
  auto d_metapath = metapath.CopyTo(ctx);
  const IdType *d_metapath_data = static_cast<IdType *>(d_metapath->data);

  constexpr int BLOCK_SIZE = 256;
  constexpr int TILE_SIZE = BLOCK_SIZE * 4;
  dim3 block(256);
  dim3 grid((num_seeds + TILE_SIZE - 1) / TILE_SIZE);
  const uint64_t random_seed = RandomEngine::ThreadLocal()->RandInt(1000000000);
  CHECK(restart_prob->ctx.device_type == kDLGPU) << "restart prob should be in GPU.";
  CHECK(restart_prob->ndim == 1) << "restart prob dimension should be 1.";
  const FloatType *restart_prob_data = restart_prob.Ptr<FloatType>();
  const int64_t restart_prob_size = restart_prob->shape[0];
  CUDA_KERNEL_CALL(
    (_RandomWalkBiasedKernel<IdType, FloatType, BLOCK_SIZE, TILE_SIZE>),
    grid, block, 0, stream,
    random_seed,
    seed_data,
    num_seeds,
    d_metapath_data,
    max_num_steps,
    d_graphs,
    probs_dev,
    prob_sums_dev,
    restart_prob_data,
    restart_prob_size,
    max_nodes,
    traces_data,
    eids_data);

  device->FreeWorkspace(ctx, d_graphs);
  device->FreeWorkspace(ctx, probs_dev);
  device->FreeWorkspace(ctx, prob_sums_dev);
  return std::make_pair(traces, eids);
}

383
384
385
386
387
388
389
template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalk(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob) {

390
  bool isUniform = true;
391
392
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
393
394
      isUniform = false;
      break;
395
396
397
398
399
    }
  }

  auto restart_prob = NDArray::Empty(
      {0}, DLDataType{kDLFloat, 32, 1}, DGLContext{XPU, 0});
400
401
402
403
404
405
406
407
408
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(hg, seeds, metapath, prob, restart_prob);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
  }
409
410
411
412
413
414
415
416
417
418
}

template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkWithRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob) {

419
  bool isUniform = true;
420
421
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
422
423
      isUniform = false;
      break;
424
425
    }
  }
426

427
  auto device_ctx = seeds->ctx;
428
  auto restart_prob_array = NDArray::Empty(
429
      {1}, DLDataType{kDLFloat, 64, 1}, device_ctx);
430
431
432
433
434
435
436
437
438
439
440
  auto device = dgl::runtime::DeviceAPI::Get(device_ctx);

  // use default stream
  cudaStream_t stream = 0;
  device->CopyDataFromTo(
      &restart_prob, 0, restart_prob_array.Ptr<double>(), 0,
      sizeof(double),
      DGLContext{kDLCPU, 0}, device_ctx,
      restart_prob_array->dtype, stream);
  device->StreamSync(device_ctx, stream);

441
442
443
444
445
446
447
448
449
450
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(
          hg, seeds, metapath, prob, restart_prob_array);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob_array);
  }
451
452
453
454
455
456
457
458
459
460
}

template<DLDeviceType XPU, typename IdType>
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob) {

461
  bool isUniform = true;
462
463
  for (const auto &etype_prob : prob) {
    if (!IsNullArray(etype_prob)) {
464
465
      isUniform = false;
      break;
466
467
468
    }
  }

469
470
471
472
473
474
475
476
477
  if (!isUniform) {
    std::pair<IdArray, IdArray> ret;
    ATEN_FLOAT_TYPE_SWITCH(prob[0]->dtype, FloatType, "probability", {
      ret = RandomWalkBiased<XPU, FloatType, IdType>(hg, seeds, metapath, prob, restart_prob);
    });
    return ret;
  } else {
    return RandomWalkUniform<XPU, IdType>(hg, seeds, metapath, restart_prob);
  }
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
}

template<DLDeviceType XPU, typename IdxType>
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k) {
  CHECK(src->ctx.device_type == kDLGPU) <<
    "IdArray needs be on GPU!";
  const IdxType* src_data = src.Ptr<IdxType>();
  const IdxType* dst_data = dst.Ptr<IdxType>();
  const int64_t num_dst_nodes = (dst->shape[0] / num_samples_per_node);
  auto ctx = src->ctx;
  // use default stream
  cudaStream_t stream = 0;
  auto frequency_hashmap = FrequencyHashmap<IdxType>(num_dst_nodes,
      num_samples_per_node, ctx, stream);
  auto ret = frequency_hashmap.Topk(src_data, dst_data, src->dtype,
      src->shape[0], num_samples_per_node, k);
  return ret;
}

template
std::pair<IdArray, IdArray> RandomWalk<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);
template
std::pair<IdArray, IdArray> RandomWalk<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob);

template
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);
template
std::pair<IdArray, IdArray> RandomWalkWithRestart<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    double restart_prob);

template
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDLGPU, int32_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);
template
std::pair<IdArray, IdArray> RandomWalkWithStepwiseRestart<kDLGPU, int64_t>(
    const HeteroGraphPtr hg,
    const IdArray seeds,
    const TypeArray metapath,
    const std::vector<FloatArray> &prob,
    FloatArray restart_prob);

template
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDLGPU, int32_t>(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);
template
std::tuple<IdArray, IdArray, IdArray> SelectPinSageNeighbors<kDLGPU, int64_t>(
    const IdArray src,
    const IdArray dst,
    const int64_t num_samples_per_node,
    const int64_t k);


};  // namespace impl

};  // namespace sampling

};  // namespace dgl