"...text-generation-inference.git" did not exist on "3f2542bb6a6df97b617be82398833dcb3d66eca5"
kernel.cc 22.9 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
#include "kernel_decl.h"
#include "../c_api_common.h"
15
#include "./check.h"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
31
          std::vector<NDArray> out_aux) {
32
  // TODO(zihao): format tuning
33
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
34
35
36
37
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
38
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
39
        if (format == SparseFormat::kCSC) {
40
          SpMMCsr<XPU, IdType, bits>(
41
42
43
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
44
          SpMMCoo<XPU, IdType, bits>(
45
46
47
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
48
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
49
50
51
52
53
54
        }
      });
    });
  });
}

55
56
57
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
58
59
60
61
          const std::vector<NDArray>& ufeat_vec,
          const std::vector<NDArray>& efeat_vec,
          std::vector<NDArray>* out,
          std::vector<std::vector<NDArray>>* out_aux) {
62
63
64
65
66
67
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
68
69
70
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
  NDArray ufeat_etype0 = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
71
72
73
74
75
76
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
77
78
79
80
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
      LOG(FATAL) << "Column width of the input node features of all etypes must be same.";
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
      LOG(FATAL) << "Column width of the input edge features of all etypes must be same.";
81
  }
82
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
83

84
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
85
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
86
      ATEN_FLOAT_BITS_SWITCH((*out)[out_eid[0]]->dtype, bits, "Feature data", {
87
88
89
90
91
92
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
93
94
95
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
96
97
98
99
100
101
102
        }
      });
    });
  });
}


103
104
105
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
106
107
           NDArray lhs,
           NDArray rhs,
108
           NDArray out,
109
           int lhs_target,
110
           int rhs_target) {
111
  // TODO(zihao): format tuning
112
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
113
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
114
115
116

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
117
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
118
        if (format == SparseFormat::kCSR) {
119
          SDDMMCsr<XPU, IdType, bits>(
120
              op, bcast, graph->GetCSRMatrix(0),
121
              lhs, rhs, out, lhs_target, rhs_target);
122
        } else if (format == SparseFormat::kCOO) {
123
          SDDMMCoo<XPU, IdType, bits>(
124
              op, bcast, graph->GetCOOMatrix(0),
125
              lhs, rhs, out, lhs_target, rhs_target);
126
        } else {
127
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
128
129
130
131
132
133
        }
      });
    });
  });
}

134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}


152
153
154
155
156
157
158
159
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
160
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
161
162
163
164

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
165
166
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
167
168
169
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

170
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
171
172
173
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
174
175
176
177
          std::vector<CSRMatrix> vec_csr;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_csr.push_back(graph->GetCSRMatrix(etype));
          }
178
179
180
181
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
182
183
184
185
186
187
188
189
190
        } else if (format == SparseFormat::kCOO) {
          std::vector<COOMatrix> vec_coo;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_coo.push_back(graph->GetCOOMatrix(etype));
          }
          SDDMMCooHetero<XPU, IdType, bits>(
              op, bcast, vec_coo,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
191
        } else {
192
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
193
194
195
196
197
198
        }
      });
    });
  });
}

199
NDArray GetEdgeMapping(HeteroGraphRef graph) {
200
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
201
202
203
204
205
206
207
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

208
209
210
211
212
213
214
215
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
216
217
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
218
219
220
221
222
      });
    });
  });
}

223
224
225
226
227
228
229
230
231
232
233
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*! \brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
                        const std::string& op,
                        const std::vector<NDArray>& feat,
                        const std::vector<NDArray>& idx,
                        const std::vector<NDArray>& idx_etype,
                        std::vector<NDArray>* out) {
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat[src_id]->dtype, bits, "Feature data", {
        UpdateGradMinMax_hetero<XPU, IdType, bits>(graph, op, feat, idx, idx_etype, out);
      });
    });
  });
}

252
253
254
255
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
256
257
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
258
259
260
261
262
      });
    });
  });
}

263
264
265
266
267
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
268
269
270
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
271
272
273
274
275
276
277
278
279
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
280
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
296
297
298
299
300
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
301
302
303
304
305
306
307
308
309
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
310
311
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
312
313
314
  }

  std::pair<CSRMatrix, NDArray> ret;
315
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
316
317
318
319
320
321
322
323
324
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
348
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
349
350
  });

351
352
353
354
355
356
357
358
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
359
360
361
362
363
364
365
    List<Value> list_ArgU = args[6];
    List<Value> list_ArgE = args[7];
    List<Value> list_ArgU_ntype = args[8];
    List<Value> list_ArgE_etype = args[9];
    std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
    for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
      Arg_vec.push_back(std::vector<NDArray>());
366
    }
367
368
369
370
371
372
373
    std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
    std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
    std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
    Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
    Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
    Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
    Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
374
375
376
377
378
379
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
380
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
381
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
382
      CheckContiguous({U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
383
384
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
385
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
386
387
  });

388
389
390
391
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
392
393
394
395
396
397
398
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
399
400
401
402
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
403

404
405
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
406
407
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
408
        {"U_data", "E_data", "V_data"});
409
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
410
411
  });

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

442
443
444
445
446
447
448
449
450
451
452
453
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

454
455
456
457
458
459
460
461
462
463
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_feat = args[2];
    List<Value> list_idx = args[3];
    List<Value> list_idx_etype = args[4];
    List<Value> list_out = args[5];
    std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
    std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
    std::vector<NDArray> vec_idx_etype = ListValueToVector<NDArray>(list_idx_etype);
    std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
    // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    UpdateGradMinMaxDispatchHetero(graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
  });

481
482
483
484
485
486
487
488
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
489
490
  });

491
492
493
494
495
496
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

497
498
499
500
501
502
503
504
505
506
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
507
508
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
525
526
527
528
529
530
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
531
532
533
534
535
536
537
538
539
540
541
542
543
544
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
545
    auto result = CSRSum(mats, weights);
546
547
548

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
549
550
551
552
553
554
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
574
575
576
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

607

608
609
}  // namespace aten
}  // namespace dgl