test_minibatch.py 39.6 KB
Newer Older
1
2
import dgl
import dgl.graphbolt as gb
peizhou001's avatar
peizhou001 committed
3
import pytest
4
5
6
import torch


peizhou001's avatar
peizhou001 committed
7
8
9
10
11
relation = "A:r:B"
reverse_relation = "B:rr:A"


def create_homo_minibatch():
12
    node_pairs = [
peizhou001's avatar
peizhou001 committed
13
14
15
16
17
18
19
20
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
21
    ]
22
    original_column_node_ids = [
peizhou001's avatar
peizhou001 committed
23
24
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
25
    ]
26
    original_row_node_ids = [
peizhou001's avatar
peizhou001 committed
27
28
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
29
    ]
30
    original_edge_ids = [
peizhou001's avatar
peizhou001 committed
31
32
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
33
    ]
peizhou001's avatar
peizhou001 committed
34
    node_features = {"x": torch.randint(0, 10, (4,))}
35
    edge_features = [
peizhou001's avatar
peizhou001 committed
36
37
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
38
39
40
41
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
42
            gb.FusedSampledSubgraphImpl(
43
                node_pairs=node_pairs[i],
44
45
46
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
47
48
            )
        )
peizhou001's avatar
peizhou001 committed
49
    return gb.MiniBatch(
50
51
52
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
53
        input_nodes=torch.tensor([10, 11, 12, 13]),
54
55
56
    )


peizhou001's avatar
peizhou001 committed
57
def create_hetero_minibatch():
58
    node_pairs = [
peizhou001's avatar
peizhou001 committed
59
60
61
62
63
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
64
    ]
65
    original_column_node_ids = [
peizhou001's avatar
peizhou001 committed
66
67
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
68
    ]
69
    original_row_node_ids = [
peizhou001's avatar
peizhou001 committed
70
71
72
73
74
75
76
77
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
78
    ]
79
    original_edge_ids = [
peizhou001's avatar
peizhou001 committed
80
81
82
83
84
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
85
    ]
peizhou001's avatar
peizhou001 committed
86
87
88
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
89
    edge_features = [
peizhou001's avatar
peizhou001 committed
90
91
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
92
93
94
95
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
96
            gb.FusedSampledSubgraphImpl(
97
                node_pairs=node_pairs[i],
98
99
100
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
101
102
            )
        )
peizhou001's avatar
peizhou001 committed
103
    return gb.MiniBatch(
104
105
106
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
107
108
109
110
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
peizhou001's avatar
peizhou001 committed
111
    )
112
113


114
115
116
117
118
def test_minibatch_representation_homo():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
119
        ),
120
121
122
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
123
124
        ),
    ]
125
    original_column_node_ids = [
126
127
128
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
129
    original_row_node_ids = [
130
131
132
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
133
    original_edge_ids = [
134
135
136
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
137
    node_features = {"x": torch.tensor([5, 0, 2, 1])}
138
    edge_features = [
139
140
        {"x": torch.tensor([9, 0, 1, 1, 7, 4])},
        {"x": torch.tensor([0, 2, 2])},
141
142
143
144
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
145
146
            gb.SampledSubgraphImpl(
                node_pairs=csc_formats[i],
147
148
149
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
150
151
152
153
154
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
155
156
157
    compacted_csc_formats = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 3]), indices=torch.tensor([3, 4, 5])
    )
158
159
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
160
161
162
163
164
165
    labels = torch.tensor([0.0, 1.0, 2.0])
    # Test minibatch without data.
    minibatch = gb.MiniBatch()
    expect_result = str(
        """MiniBatch(seed_nodes=None,
          sampled_subgraphs=None,
166
167
          positive_node_pairs=None,
          node_pairs_with_labels=None,
168
169
170
          node_pairs=None,
          node_features=None,
          negative_srcs=None,
171
          negative_node_pairs=None,
172
173
174
175
176
177
178
          negative_dsts=None,
          labels=None,
          input_nodes=None,
          edge_features=None,
          compacted_node_pairs=None,
          compacted_negative_srcs=None,
          compacted_negative_dsts=None,
179
          blocks=None,
180
181
182
183
184
185
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(len(expect_result), len(result))
    # Test minibatch with all attributes.
    minibatch = gb.MiniBatch(
186
        node_pairs=csc_formats,
187
188
189
190
191
192
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
193
        compacted_node_pairs=compacted_csc_formats,
194
195
196
197
198
199
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes=None,
200
201
202
203
204
205
206
207
208
209
210
211
212
213
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids=tensor([10, 11, 12, 13]),
                                               original_edge_ids=tensor([19, 20, 21, 22, 25, 30]),
                                               original_column_node_ids=tensor([10, 11, 12, 13]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                                                        indices=tensor([0, 1, 2, 2, 1, 2]),
                                                          ),
                            ),
                            SampledSubgraphImpl(original_row_node_ids=tensor([10, 11, 12]),
                                               original_edge_ids=tensor([10, 15, 17]),
                                               original_column_node_ids=tensor([10, 11]),
                                               node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                                                        indices=tensor([1, 2, 0]),
                                                          ),
                            )],
214
215
216
217
218
219
220
          positive_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ),
          node_pairs_with_labels=(CSCFormatBase(indptr=tensor([0, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ),
                                 tensor([0., 1., 2.])),
221
222
223
224
225
226
227
          node_pairs=[CSCFormatBase(indptr=tensor([0, 1, 3, 5, 6]),
                                   indices=tensor([0, 1, 2, 2, 1, 2]),
                     ),
                     CSCFormatBase(indptr=tensor([0, 2, 3]),
                                   indices=tensor([1, 2, 0]),
                     )],
          node_features={'x': tensor([5, 0, 2, 1])},
228
229
230
          negative_srcs=tensor([[8],
                                [1],
                                [6]]),
231
232
          negative_node_pairs=(tensor([0, 1, 2]),
                              tensor([6, 0, 0])),
233
234
235
236
237
          negative_dsts=tensor([[2],
                                [8],
                                [8]]),
          labels=tensor([0., 1., 2.]),
          input_nodes=tensor([8, 1, 6, 5, 9, 0, 2, 4]),
238
239
240
241
242
          edge_features=[{'x': tensor([9, 0, 1, 1, 7, 4])},
                        {'x': tensor([0, 2, 2])}],
          compacted_node_pairs=CSCFormatBase(indptr=tensor([0, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ),
243
244
245
246
247
248
          compacted_negative_srcs=tensor([[0],
                                          [1],
                                          [2]]),
          compacted_negative_dsts=tensor([[6],
                                          [0],
                                          [0]]),
249
250
          blocks=[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6),
                 Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)],
251
252
253
254
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(expect_result, result)
peizhou001's avatar
peizhou001 committed
255
256


257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def test_minibatch_representation_hetero():
    csc_formats = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=csc_formats[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_csc_formats = {
        relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 2, 3]), indices=torch.tensor([3, 4, 5])
        ),
        reverse_relation: gb.CSCFormatBase(
            indptr=torch.tensor([0, 0, 0, 1, 2]), indices=torch.tensor([0, 1])
        ),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
325
    # Test minibatch with all attributes.
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=csc_formats,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_csc_formats,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
    expect_result = str(
        """MiniBatch(seed_nodes={'B': tensor([10, 15])},
          sampled_subgraphs=[SampledSubgraphImpl(original_row_node_ids={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
                                               original_edge_ids={'A:r:B': tensor([19, 20, 21]), 'B:rr:A': tensor([23, 26])},
                                               original_column_node_ids={'B': tensor([10, 11, 12]), 'A': tensor([ 5,  7,  9, 11])},
                                               node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                                                        indices=tensor([0, 1, 1]),
                                                          ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                                                        indices=tensor([1, 0]),
                                                          )},
                            ),
                            SampledSubgraphImpl(original_row_node_ids={'A': tensor([5, 7]), 'B': tensor([10, 11])},
                                               original_edge_ids={'A:r:B': tensor([10, 12])},
                                               original_column_node_ids={'B': tensor([10, 11])},
                                               node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                                                        indices=tensor([1, 0]),
                                                          )},
                            )],
361
362
363
364
365
366
367
368
369
370
371
          positive_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                            indices=tensor([3, 4, 5]),
                              ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                            indices=tensor([0, 1]),
                              )},
          node_pairs_with_labels=({'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                               indices=tensor([3, 4, 5]),
                                 ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                               indices=tensor([0, 1]),
                                 )},
                                 {'B': tensor([2, 5])}),
372
373
374
375
376
377
378
379
380
381
382
383
          node_pairs=[{'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                   indices=tensor([0, 1, 1]),
                     ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )},
                     {'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2]),
                                   indices=tensor([1, 0]),
                     )}],
          node_features={('A', 'x'): tensor([6, 4, 0, 1])},
          negative_srcs={'B': tensor([[8],
                                [1],
                                [6]])},
384
          negative_node_pairs={'A:r:B': (tensor([0, 1, 2]), tensor([6, 0, 0]))},
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
          negative_dsts={'B': tensor([[2],
                                [8],
                                [8]])},
          labels={'B': tensor([2, 5])},
          input_nodes={'A': tensor([ 5,  7,  9, 11]), 'B': tensor([10, 11, 12])},
          edge_features=[{('A:r:B', 'x'): tensor([4, 2, 4])},
                        {('A:r:B', 'x'): tensor([0, 6])}],
          compacted_node_pairs={'A:r:B': CSCFormatBase(indptr=tensor([0, 1, 2, 3]),
                                             indices=tensor([3, 4, 5]),
                               ), 'B:rr:A': CSCFormatBase(indptr=tensor([0, 0, 0, 1, 2]),
                                             indices=tensor([0, 1]),
                               )},
          compacted_negative_srcs={'A:r:B': tensor([[0],
                                          [1],
                                          [2]])},
          compacted_negative_dsts={'A:r:B': tensor([[6],
                                          [0],
                                          [0]])},
403
404
405
406
407
408
409
410
          blocks=[Block(num_src_nodes={'A': 4, 'B': 3},
                       num_dst_nodes={'A': 4, 'B': 3},
                       num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
                       metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]),
                 Block(num_src_nodes={'A': 2, 'B': 2},
                       num_dst_nodes={'B': 2},
                       num_edges={('A', 'r', 'B'): 2},
                       metagraph=[('A', 'B', 'r')])],
411
412
413
414
415
416
       )"""
    )
    result = str(minibatch)
    assert result == expect_result, print(result)


417
def test_get_dgl_blocks_homo():
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    node_pairs = [
        (
            torch.tensor([0, 1, 2, 2, 2, 1]),
            torch.tensor([0, 1, 1, 2, 3, 2]),
        ),
        (
            torch.tensor([0, 1, 2]),
            torch.tensor([1, 0, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.tensor([7, 6, 2, 2])}
    edge_features = [
        {"x": torch.tensor([[8], [1], [6]])},
        {"x": torch.tensor([[2], [8], [8]])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
448
            gb.FusedSampledSubgraphImpl(
449
450
451
452
453
454
455
456
457
458
                node_pairs=node_pairs[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = torch.tensor([[8], [1], [6]])
    negative_dsts = torch.tensor([[2], [8], [8]])
    input_nodes = torch.tensor([8, 1, 6, 5, 9, 0, 2, 4])
    compacted_node_pairs = (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5]))
459
460
    compacted_negative_srcs = torch.tensor([[0], [1], [2]])
    compacted_negative_dsts = torch.tensor([[6], [0], [0]])
461
    labels = torch.tensor([0.0, 1.0, 2.0])
462
    # Test minibatch with all attributes.
463
464
465
466
467
468
469
470
471
472
473
474
475
    minibatch = gb.MiniBatch(
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        labels=labels,
        node_features=node_features,
        edge_features=edge_features,
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes=input_nodes,
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
476
    dgl_blocks = minibatch.blocks
477
    expect_result = str(
478
        """[Block(num_src_nodes=4, num_dst_nodes=4, num_edges=6), Block(num_src_nodes=3, num_dst_nodes=2, num_edges=3)]"""
479
    )
480
    result = str(dgl_blocks)
481
482
483
    assert result == expect_result, print(result)


484
def test_get_dgl_blocks_hetero():
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    node_pairs = [
        {
            relation: (torch.tensor([0, 1, 1]), torch.tensor([0, 1, 2])),
            reverse_relation: (torch.tensor([1, 0]), torch.tensor([2, 3])),
        },
        {relation: (torch.tensor([0, 1]), torch.tensor([1, 0]))},
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.tensor([6, 4, 0, 1]),
    }
    edge_features = [
        {(relation, "x"): torch.tensor([4, 2, 4])},
        {(relation, "x"): torch.tensor([0, 6])},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.FusedSampledSubgraphImpl(
                node_pairs=node_pairs[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    negative_srcs = {"B": torch.tensor([[8], [1], [6]])}
    negative_dsts = {"B": torch.tensor([[2], [8], [8]])}
    compacted_node_pairs = {
        relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
        reverse_relation: (torch.tensor([0, 1, 2]), torch.tensor([3, 4, 5])),
    }
    compacted_negative_srcs = {relation: torch.tensor([[0], [1], [2]])}
    compacted_negative_dsts = {relation: torch.tensor([[6], [0], [0]])}
538
    # Test minibatch with all attributes.
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    minibatch = gb.MiniBatch(
        seed_nodes={"B": torch.tensor([10, 15])},
        node_pairs=node_pairs,
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        labels={"B": torch.tensor([2, 5])},
        negative_srcs=negative_srcs,
        negative_dsts=negative_dsts,
        compacted_node_pairs=compacted_node_pairs,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        compacted_negative_srcs=compacted_negative_srcs,
        compacted_negative_dsts=compacted_negative_dsts,
    )
556
    dgl_blocks = minibatch.blocks
557
    expect_result = str(
558
559
560
561
562
563
564
        """[Block(num_src_nodes={'A': 4, 'B': 3},
      num_dst_nodes={'A': 4, 'B': 3},
      num_edges={('A', 'r', 'B'): 3, ('B', 'rr', 'A'): 2},
      metagraph=[('A', 'B', 'r'), ('B', 'A', 'rr')]), Block(num_src_nodes={'A': 2, 'B': 2},
      num_dst_nodes={'B': 2},
      num_edges={('A', 'r', 'B'): 2},
      metagraph=[('A', 'B', 'r')])]"""
565
    )
566
    result = str(dgl_blocks)
567
568
569
    assert result == expect_result, print(result)


570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
@pytest.mark.parametrize(
    "mode", ["neg_graph", "neg_src", "neg_dst", "edge_classification"]
)
def test_minibatch_node_pairs_with_labels(mode):
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    if mode == "edge_classification":
        minibatch.labels = torch.tensor([0, 1]).long()
    # Act
    node_pairs, labels = minibatch.node_pairs_with_labels

    # Assert
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    elif mode != "edge_classification":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
        expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    else:
        expect_node_pairs = (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        )
        expect_labels = torch.tensor([0, 1]).long()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)


peizhou001's avatar
peizhou001 committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def check_dgl_blocks_hetero(minibatch, blocks):
    etype = gb.etype_str_to_tuple(relation)
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        assert torch.equal(edges[0], node_pairs[i][relation][0])
        assert torch.equal(edges[1], node_pairs[i][relation][1])
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    assert torch.equal(edges[0], node_pairs[0][reverse_relation][0])
    assert torch.equal(edges[1], node_pairs[0][reverse_relation][1])
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


def check_dgl_blocks_homo(minibatch, blocks):
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        assert torch.equal(block.edges()[0], node_pairs[i][0])
        assert torch.equal(block.edges()[1], node_pairs[i][1])
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i])
    assert torch.equal(blocks[0].srcdata[dgl.NID], original_row_node_ids[0])


662
def test_get_dgl_blocks_node_classification_without_feature():
663
664
665
666
667
668
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
669
    dgl_blocks = minibatch.blocks
670
671

    # Assert
672
673
674
675
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
    check_dgl_blocks_homo(minibatch, dgl_blocks)
676
677


678
def test_get_dgl_blocks_node_classification_homo():
peizhou001's avatar
peizhou001 committed
679
680
681
682
683
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
684
    dgl_blocks = minibatch.blocks
peizhou001's avatar
peizhou001 committed
685
686

    # Assert
687
688
    assert len(dgl_blocks) == 2
    check_dgl_blocks_homo(minibatch, dgl_blocks)
peizhou001's avatar
peizhou001 committed
689
690
691
692
693
694


def test_to_dgl_node_classification_hetero():
    minibatch = create_hetero_minibatch()
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
695
    dgl_blocks = minibatch.blocks
peizhou001's avatar
peizhou001 committed
696
697

    # Assert
698
699
    assert len(dgl_blocks) == 2
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
peizhou001's avatar
peizhou001 committed
700
701
702


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
703
def test_dgl_link_predication_homo(mode):
peizhou001's avatar
peizhou001 committed
704
705
706
707
708
709
710
711
712
713
714
    # Arrange
    minibatch = create_homo_minibatch()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
715
    dgl_blocks = minibatch.blocks
peizhou001's avatar
peizhou001 committed
716
717

    # Assert
718
719
    assert len(dgl_blocks) == 2
    check_dgl_blocks_homo(minibatch, dgl_blocks)
peizhou001's avatar
peizhou001 committed
720
721
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
722
            minibatch.negative_node_pairs[0],
peizhou001's avatar
peizhou001 committed
723
724
725
726
            minibatch.compacted_negative_srcs.view(-1),
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
727
            minibatch.negative_node_pairs[1],
peizhou001's avatar
peizhou001 committed
728
729
            minibatch.compacted_negative_dsts.view(-1),
        )
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
    node_pairs, labels = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
peizhou001's avatar
peizhou001 committed
745
746
747


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
748
def test_dgl_link_predication_hetero(mode):
peizhou001's avatar
peizhou001 committed
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
    # Arrange
    minibatch = create_hetero_minibatch()
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
772
    dgl_blocks = minibatch.blocks
peizhou001's avatar
peizhou001 committed
773
774

    # Assert
775
776
    assert len(dgl_blocks) == 2
    check_dgl_blocks_hetero(minibatch, dgl_blocks)
peizhou001's avatar
peizhou001 committed
777
778
779
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
780
                minibatch.negative_node_pairs[etype][0],
peizhou001's avatar
peizhou001 committed
781
782
783
784
785
                src.view(-1),
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
786
                minibatch.negative_node_pairs[etype][1],
peizhou001's avatar
peizhou001 committed
787
788
                minibatch.compacted_negative_dsts[etype].view(-1),
            )
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975


def create_homo_minibatch_csc_format():
    csc_formats = [
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 1, 3, 5, 6]),
            indices=torch.tensor([0, 1, 2, 2, 1, 2]),
        ),
        gb.CSCFormatBase(
            indptr=torch.tensor([0, 2, 3]),
            indices=torch.tensor([1, 2, 0]),
        ),
    ]
    original_column_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11]),
    ]
    original_row_node_ids = [
        torch.tensor([10, 11, 12, 13]),
        torch.tensor([10, 11, 12]),
    ]
    original_edge_ids = [
        torch.tensor([19, 20, 21, 22, 25, 30]),
        torch.tensor([10, 15, 17]),
    ]
    node_features = {"x": torch.randint(0, 10, (4,))}
    edge_features = [
        {"x": torch.randint(0, 10, (6,))},
        {"x": torch.randint(0, 10, (3,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=csc_formats[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes=torch.tensor([10, 11, 12, 13]),
    )


def create_hetero_minibatch_csc_format():
    node_pairs = [
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2, 3]),
                indices=torch.tensor([0, 1, 1]),
            ),
            reverse_relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 0, 0, 1, 2]),
                indices=torch.tensor([1, 0]),
            ),
        },
        {
            relation: gb.CSCFormatBase(
                indptr=torch.tensor([0, 1, 2]), indices=torch.tensor([1, 0])
            )
        },
    ]
    original_column_node_ids = [
        {"B": torch.tensor([10, 11, 12]), "A": torch.tensor([5, 7, 9, 11])},
        {"B": torch.tensor([10, 11])},
    ]
    original_row_node_ids = [
        {
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
        {
            "A": torch.tensor([5, 7]),
            "B": torch.tensor([10, 11]),
        },
    ]
    original_edge_ids = [
        {
            relation: torch.tensor([19, 20, 21]),
            reverse_relation: torch.tensor([23, 26]),
        },
        {relation: torch.tensor([10, 12])},
    ]
    node_features = {
        ("A", "x"): torch.randint(0, 10, (4,)),
    }
    edge_features = [
        {(relation, "x"): torch.randint(0, 10, (3,))},
        {(relation, "x"): torch.randint(0, 10, (2,))},
    ]
    subgraphs = []
    for i in range(2):
        subgraphs.append(
            gb.SampledSubgraphImpl(
                node_pairs=node_pairs[i],
                original_column_node_ids=original_column_node_ids[i],
                original_row_node_ids=original_row_node_ids[i],
                original_edge_ids=original_edge_ids[i],
            )
        )
    return gb.MiniBatch(
        sampled_subgraphs=subgraphs,
        node_features=node_features,
        edge_features=edge_features,
        input_nodes={
            "A": torch.tensor([5, 7, 9, 11]),
            "B": torch.tensor([10, 11, 12]),
        },
    )


def check_dgl_blocks_hetero_csc_format(minibatch, blocks):
    etype = gb.etype_str_to_tuple(relation)
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]

    for i, block in enumerate(blocks):
        edges = block.edges(etype=etype)
        dst_ndoes = torch.arange(
            0, len(node_pairs[i][relation].indptr) - 1
        ).repeat_interleave(
            node_pairs[i][relation].indptr[1:]
            - node_pairs[i][relation].indptr[:-1]
        )
        assert torch.equal(edges[0], node_pairs[i][relation].indices)
        assert torch.equal(edges[1], dst_ndoes)
        assert torch.equal(
            block.edges[etype].data[dgl.EID], original_edge_ids[i][relation]
        )
    edges = blocks[0].edges(etype=gb.etype_str_to_tuple(reverse_relation))
    dst_ndoes = torch.arange(
        0, len(node_pairs[0][reverse_relation].indptr) - 1
    ).repeat_interleave(
        node_pairs[0][reverse_relation].indptr[1:]
        - node_pairs[0][reverse_relation].indptr[:-1]
    )
    assert torch.equal(edges[0], node_pairs[0][reverse_relation].indices)
    assert torch.equal(edges[1], dst_ndoes)
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["A"], original_row_node_ids[0]["A"]
    )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID]["B"], original_row_node_ids[0]["B"]
    )


def check_dgl_blocks_homo_csc_format(minibatch, blocks):
    node_pairs = [
        subgraph.node_pairs for subgraph in minibatch.sampled_subgraphs
    ]
    original_edge_ids = [
        subgraph.original_edge_ids for subgraph in minibatch.sampled_subgraphs
    ]
    original_row_node_ids = [
        subgraph.original_row_node_ids
        for subgraph in minibatch.sampled_subgraphs
    ]
    for i, block in enumerate(blocks):
        dst_ndoes = torch.arange(
            0, len(node_pairs[i].indptr) - 1
        ).repeat_interleave(
            node_pairs[i].indptr[1:] - node_pairs[i].indptr[:-1]
        )
        assert torch.equal(block.edges()[0], node_pairs[i].indices), print(
            block.edges()
        )
        assert torch.equal(block.edges()[1], dst_ndoes), print(block.edges())
        assert torch.equal(block.edata[dgl.EID], original_edge_ids[i]), print(
            block.edata[dgl.EID]
        )
    assert torch.equal(
        blocks[0].srcdata[dgl.NID], original_row_node_ids[0]
    ), print(blocks[0].srcdata[dgl.NID])


976
def test_dgl_node_classification_without_feature_csc_format():
977
978
979
980
981
982
    # Arrange
    minibatch = create_homo_minibatch_csc_format()
    minibatch.node_features = None
    minibatch.labels = None
    minibatch.seed_nodes = torch.tensor([10, 15])
    # Act
983
    dgl_blocks = minibatch.blocks
984
985

    # Assert
986
987
988
989
    assert len(dgl_blocks) == 2
    assert minibatch.node_features is None
    assert minibatch.labels is None
    check_dgl_blocks_homo_csc_format(minibatch, dgl_blocks)
990
991


992
def test_dgl_node_classification_homo_csc_format():
993
994
995
996
997
    # Arrange
    minibatch = create_homo_minibatch_csc_format()
    minibatch.seed_nodes = torch.tensor([10, 15])
    minibatch.labels = torch.tensor([2, 5])
    # Act
998
    dgl_blocks = minibatch.blocks
999
1000

    # Assert
1001
1002
    assert len(dgl_blocks) == 2
    check_dgl_blocks_homo_csc_format(minibatch, dgl_blocks)
1003
1004


1005
def test_dgl_node_classification_hetero_csc_format():
1006
1007
1008
    minibatch = create_hetero_minibatch_csc_format()
    minibatch.labels = {"B": torch.tensor([2, 5])}
    minibatch.seed_nodes = {"B": torch.tensor([10, 15])}
1009
1010
    # Act
    dgl_blocks = minibatch.blocks
1011
1012

    # Assert
1013
1014
    assert len(dgl_blocks) == 2
    check_dgl_blocks_hetero_csc_format(minibatch, dgl_blocks)
1015
1016
1017


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
1018
def test_dgl_link_predication_homo_csc_format(mode):
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    # Arrange
    minibatch = create_homo_minibatch_csc_format()
    minibatch.compacted_node_pairs = (
        torch.tensor([0, 1]),
        torch.tensor([1, 0]),
    )
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = torch.tensor([[0, 0], [1, 1]])
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = torch.tensor([[1, 0], [0, 1]])
    # Act
1030
    dgl_blocks = minibatch.blocks
1031
1032

    # Assert
1033
1034
    assert len(dgl_blocks) == 2
    check_dgl_blocks_homo_csc_format(minibatch, dgl_blocks)
1035
1036
    if mode == "neg_graph" or mode == "neg_src":
        assert torch.equal(
1037
            minibatch.negative_node_pairs[0],
1038
1039
1040
1041
            minibatch.compacted_negative_srcs.view(-1),
        )
    if mode == "neg_graph" or mode == "neg_dst":
        assert torch.equal(
1042
            minibatch.negative_node_pairs[1],
1043
1044
            minibatch.compacted_negative_dsts.view(-1),
        )
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    (
        node_pairs,
        labels,
    ) = minibatch.node_pairs_with_labels
    if mode == "neg_src":
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 1, 0, 0]),
        )
    else:
        expect_node_pairs = (
            torch.tensor([0, 1, 0, 0, 1, 1]),
            torch.tensor([1, 0, 1, 0, 0, 1]),
        )
    expect_labels = torch.tensor([1, 1, 0, 0, 0, 0]).float()
    assert torch.equal(node_pairs[0], expect_node_pairs[0])
    assert torch.equal(node_pairs[1], expect_node_pairs[1])
    assert torch.equal(labels, expect_labels)
1063
1064
1065


@pytest.mark.parametrize("mode", ["neg_graph", "neg_src", "neg_dst"])
1066
def test_dgl_link_predication_hetero_csc_format(mode):
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
    # Arrange
    minibatch = create_hetero_minibatch_csc_format()
    minibatch.compacted_node_pairs = {
        relation: (
            torch.tensor([1, 1]),
            torch.tensor([1, 0]),
        ),
        reverse_relation: (
            torch.tensor([0, 1]),
            torch.tensor([1, 0]),
        ),
    }
    if mode == "neg_graph" or mode == "neg_src":
        minibatch.compacted_negative_srcs = {
            relation: torch.tensor([[2, 0], [1, 2]]),
            reverse_relation: torch.tensor([[1, 2], [0, 2]]),
        }
    if mode == "neg_graph" or mode == "neg_dst":
        minibatch.compacted_negative_dsts = {
            relation: torch.tensor([[1, 3], [2, 1]]),
            reverse_relation: torch.tensor([[2, 1], [3, 1]]),
        }
    # Act
1090
    dgl_blocks = minibatch.blocks
1091
1092

    # Assert
1093
1094
    assert len(dgl_blocks) == 2
    check_dgl_blocks_hetero_csc_format(minibatch, dgl_blocks)
1095
1096
1097
    if mode == "neg_graph" or mode == "neg_src":
        for etype, src in minibatch.compacted_negative_srcs.items():
            assert torch.equal(
1098
                minibatch.negative_node_pairs[etype][0],
1099
1100
1101
1102
1103
                src.view(-1),
            )
    if mode == "neg_graph" or mode == "neg_dst":
        for etype, dst in minibatch.compacted_negative_dsts.items():
            assert torch.equal(
1104
                minibatch.negative_node_pairs[etype][1],
1105
1106
                minibatch.compacted_negative_dsts[etype].view(-1),
            )