test_base.py 9.27 KB
Newer Older
1
2
import re
import unittest
3
from collections.abc import Iterable, Mapping
4
5
6
7
8
9

import backend as F

import dgl.graphbolt as gb
import pytest
import torch
10
from torch.torch_version import TorchVersion
11

12
13
from . import gb_test_utils

14
15
16

@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyTo():
17
    item_sampler = gb.ItemSampler(
18
        gb.ItemSet(torch.arange(20), names="seeds"), 4
19
    )
20
21

    # Invoke CopyTo via class constructor.
22
    dp = gb.CopyTo(item_sampler, "cuda")
23
    for data in dp:
24
        assert data.seeds.device.type == "cuda"
25

26
    # Invoke CopyTo via functional form.
27
    dp = item_sampler.copy_to("cuda")
28
    for data in dp:
29
        assert data.seeds.device.type == "cuda"
30
31


32
33
34
35
36
37
38
39
40
41
42
43
44
@pytest.mark.parametrize(
    "task",
    [
        "node_classification",
        "node_inference",
        "link_prediction",
        "edge_classification",
    ],
)
@unittest.skipIf(F._default_context_str == "cpu", "CopyTo needs GPU to test")
def test_CopyToWithMiniBatches(task):
    N = 16
    B = 2
45
    if task == "node_classification":
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        itemset = gb.ItemSet(
            (torch.arange(N), torch.arange(N)), names=("seeds", "labels")
        )
    elif task == "node_inference":
        itemset = gb.ItemSet(torch.arange(N), names="seeds")
    elif task == "link_prediction":
        itemset = gb.ItemSet(
            (
                torch.arange(2 * N).reshape(-1, 2),
                torch.arange(N),
            ),
            names=("seeds", "labels"),
        )
    elif task == "edge_classification":
        itemset = gb.ItemSet(
            (torch.arange(2 * N).reshape(-1, 2), torch.arange(N)),
            names=("seeds", "labels"),
        )
    graph = gb_test_utils.rand_csc_graph(100, 0.15, bidirection_edge=True)

    features = {}
    keys = [("node", None, "a"), ("node", None, "b")]
    features[keys[0]] = gb.TorchBasedFeature(torch.randn(200, 4))
    features[keys[1]] = gb.TorchBasedFeature(torch.randn(200, 4))
    feature_store = gb.BasicFeatureStore(features)

    datapipe = gb.ItemSampler(itemset, batch_size=B)
    datapipe = gb.NeighborSampler(
        datapipe,
        graph,
        fanouts=[torch.LongTensor([2]) for _ in range(2)],
    )
    if task != "node_inference":
        datapipe = gb.FeatureFetcher(
            datapipe,
            feature_store,
            ["a"],
        )

85
86
87
88
89
90
91
92
93
94
95
    copied_attrs = [
        "labels",
        "compacted_seeds",
        "sampled_subgraphs",
        "indexes",
        "node_features",
        "edge_features",
        "blocks",
        "seeds",
        "input_nodes",
    ]
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

    def test_data_device(datapipe):
        for data in datapipe:
            for attr in dir(data):
                var = getattr(data, attr)
                if isinstance(var, Mapping):
                    var = var[next(iter(var))]
                elif isinstance(var, Iterable):
                    var = next(iter(var))
                if (
                    not callable(var)
                    and not attr.startswith("__")
                    and hasattr(var, "device")
                    and var is not None
                ):
                    if attr in copied_attrs:
                        assert var.device.type == "cuda", attr
                    else:
                        assert var.device.type == "cpu", attr

    # Invoke CopyTo via class constructor.
117
    test_data_device(gb.CopyTo(datapipe, "cuda"))
118
119

    # Invoke CopyTo via functional form.
120
    test_data_device(datapipe.copy_to("cuda"))
121
122


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def test_etype_tuple_to_str():
    """Convert etype from tuple to string."""
    # Test for expected input.
    c_etype = ("user", "like", "item")
    c_etype_str = gb.etype_tuple_to_str(c_etype)
    assert c_etype_str == "user:like:item"

    # Test for unexpected input: not a tuple.
    c_etype = "user:like:item"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got user:like:item."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)

    # Test for unexpected input: tuple with wrong length.
    c_etype = ("user", "like")
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of (str, str, str). "
            "But got ('user', 'like')."
        ),
    ):
        _ = gb.etype_tuple_to_str(c_etype)


def test_etype_str_to_tuple():
    """Convert etype from string to tuple."""
    # Test for expected input.
    c_etype_str = "user:like:item"
    c_etype = gb.etype_str_to_tuple(c_etype_str)
    assert c_etype == ("user", "like", "item")

    # Test for unexpected input: string with wrong format.
    c_etype_str = "user:like"
    with pytest.raises(
        AssertionError,
        match=re.escape(
            "Passed-in canonical etype should be in format of 'str:str:str'. "
            "But got user:like."
        ),
    ):
        _ = gb.etype_str_to_tuple(c_etype_str)
170
171
172


def test_isin():
173
174
    elements = torch.tensor([2, 3, 5, 5, 20, 13, 11], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
175
    res = gb.isin(elements, test_elements)
176
177
178
    expected = torch.tensor(
        [True, False, True, True, False, False, False], device=F.ctx()
    )
179
180
181
182
    assert torch.equal(res, expected)


def test_isin_big_data():
183
184
    elements = torch.randint(0, 10000, (10000000,), device=F.ctx())
    test_elements = torch.randint(0, 10000, (500000,), device=F.ctx())
185
186
187
188
189
190
    res = gb.isin(elements, test_elements)
    expected = torch.isin(elements, test_elements)
    assert torch.equal(res, expected)


def test_isin_non_1D_dim():
191
192
    elements = torch.tensor([[2, 3], [5, 5], [20, 13]], device=F.ctx())
    test_elements = torch.tensor([2, 5], device=F.ctx())
193
194
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
195
196
    elements = torch.tensor([2, 3, 5, 5, 20, 13], device=F.ctx())
    test_elements = torch.tensor([[2, 5]], device=F.ctx())
197
198
    with pytest.raises(Exception):
        gb.isin(elements, test_elements)
199
200


201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
@pytest.mark.parametrize(
    "dtype",
    [
        torch.bool,
        torch.uint8,
        torch.int8,
        torch.int16,
        torch.int32,
        torch.int64,
        torch.float16,
        torch.bfloat16,
        torch.float32,
        torch.float64,
    ],
)
@pytest.mark.parametrize("idtype", [torch.int32, torch.int64])
@pytest.mark.parametrize("pinned", [False, True])
def test_index_select(dtype, idtype, pinned):
    if F._default_context_str != "gpu" and pinned:
        pytest.skip("Pinned tests are available only on GPU.")
    tensor = torch.tensor([[2, 3], [5, 5], [20, 13]], dtype=dtype)
    tensor = tensor.pin_memory() if pinned else tensor.to(F.ctx())
    index = torch.tensor([0, 2], dtype=idtype, device=F.ctx())
    gb_result = gb.index_select(tensor, index)
    torch_result = tensor.to(F.ctx())[index.long()]
    assert torch.equal(torch_result, gb_result)


229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def torch_expand_indptr(indptr, dtype, nodes=None):
    if nodes is None:
        nodes = torch.arange(len(indptr) - 1, dtype=dtype, device=indptr.device)
    return nodes.to(dtype).repeat_interleave(indptr.diff())


@pytest.mark.parametrize("nodes", [None, True])
@pytest.mark.parametrize("dtype", [torch.int32, torch.int64])
def test_expand_indptr(nodes, dtype):
    if nodes:
        nodes = torch.tensor([1, 7, 3, 4, 5, 8], dtype=dtype, device=F.ctx())
    indptr = torch.tensor([0, 2, 2, 7, 10, 12, 20], device=F.ctx())
    torch_result = torch_expand_indptr(indptr, dtype, nodes)
    gb_result = gb.expand_indptr(indptr, dtype, nodes)
    assert torch.equal(torch_result, gb_result)
    gb_result = gb.expand_indptr(indptr, dtype, nodes, indptr[-1].item())
    assert torch.equal(torch_result, gb_result)

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    if TorchVersion(torch.__version__) >= TorchVersion("2.2.0a0"):
        import torch._dynamo as dynamo
        from torch.testing._internal.optests import opcheck

        # Tests torch.compile compatibility
        for output_size in [None, indptr[-1].item()]:
            kwargs = {"node_ids": nodes, "output_size": output_size}
            opcheck(
                torch.ops.graphbolt.expand_indptr,
                (indptr, dtype),
                kwargs,
                test_utils=[
                    "test_schema",
                    "test_autograd_registration",
                    "test_faketensor",
                    "test_aot_dispatch_dynamic",
                ],
                raise_exception=True,
            )

            explanation = dynamo.explain(gb.expand_indptr)(
                indptr, dtype, nodes, output_size
            )
            expected_breaks = -1 if output_size is None else 0
            assert explanation.graph_break_count == expected_breaks

273

274
275
276
277
278
279
280
281
282
283
284
def test_csc_format_base_representation():
    csc_format_base = gb.CSCFormatBase(
        indptr=torch.tensor([0, 2, 4]),
        indices=torch.tensor([4, 5, 6, 7]),
    )
    expected_result = str(
        """CSCFormatBase(indptr=tensor([0, 2, 4]),
              indices=tensor([4, 5, 6, 7]),
)"""
    )
    assert str(csc_format_base) == expected_result, print(csc_format_base)
285
286
287
288
289
290
291
292


def test_csc_format_base_incorrect_indptr():
    indptr = torch.tensor([0, 2, 4, 6, 7, 11])
    indices = torch.tensor([2, 3, 1, 4, 5, 2, 5, 1, 4, 4])
    with pytest.raises(AssertionError):
        # The value of last element in indptr is not corresponding to indices.
        csc_formats = gb.CSCFormatBase(indptr=indptr, indices=indices)