train.py 13 KB
Newer Older
1
2
import argparse
import copy
3
4
import time
import traceback
5
6
7

import numpy as np
import torch
8
9
10
11
12
13
14
15
16
17
18
19
20
21
from data_preprocess import (
    TemporalDataset,
    TemporalRedditDataset,
    TemporalWikipediaDataset,
)
from dataloading import (
    FastTemporalEdgeCollator,
    FastTemporalSampler,
    SimpleTemporalEdgeCollator,
    SimpleTemporalSampler,
    TemporalEdgeCollator,
    TemporalEdgeDataLoader,
    TemporalSampler,
)
22
from sklearn.metrics import average_precision_score, roc_auc_score
23
from tgn import TGN
24

25
import dgl
26
27
28
29
30
31
32
33
34

TRAIN_SPLIT = 0.7
VALID_SPLIT = 0.85

# set random Seed
np.random.seed(2021)
torch.manual_seed(2021)


35
def train(model, dataloader, sampler, criterion, optimizer, args):
36
37
38
39
40
41
42
    model.train()
    total_loss = 0
    batch_cnt = 0
    last_t = time.time()
    for _, positive_pair_g, negative_pair_g, blocks in dataloader:
        optimizer.zero_grad()
        pred_pos, pred_neg = model.embed(
43
44
            positive_pair_g, negative_pair_g, blocks
        )
45
46
        loss = criterion(pred_pos, torch.ones_like(pred_pos))
        loss += criterion(pred_neg, torch.zeros_like(pred_neg))
47
        total_loss += float(loss) * args.batch_size
48
        retain_graph = True if batch_cnt == 0 and not args.fast_mode else False
49
50
51
        loss.backward(retain_graph=retain_graph)
        optimizer.step()
        model.detach_memory()
52
53
54
        if not args.not_use_memory:
            model.update_memory(positive_pair_g)
        if args.fast_mode:
55
            sampler.attach_last_update(model.memory.last_update_t)
56
        print("Batch: ", batch_cnt, "Time: ", time.time() - last_t)
57
58
59
60
61
        last_t = time.time()
        batch_cnt += 1
    return total_loss


62
def test_val(model, dataloader, sampler, criterion, args):
63
    model.eval()
64
    batch_size = args.batch_size
65
66
67
68
69
70
    total_loss = 0
    aps, aucs = [], []
    batch_cnt = 0
    with torch.no_grad():
        for _, postive_pair_g, negative_pair_g, blocks in dataloader:
            pred_pos, pred_neg = model.embed(
71
72
                postive_pair_g, negative_pair_g, blocks
            )
73
74
            loss = criterion(pred_pos, torch.ones_like(pred_pos))
            loss += criterion(pred_neg, torch.zeros_like(pred_neg))
75
            total_loss += float(loss) * batch_size
76
77
            y_pred = torch.cat([pred_pos, pred_neg], dim=0).sigmoid().cpu()
            y_true = torch.cat(
78
79
80
                [torch.ones(pred_pos.size(0)), torch.zeros(pred_neg.size(0))],
                dim=0,
            )
81
82
83
            if not args.not_use_memory:
                model.update_memory(postive_pair_g)
            if args.fast_mode:
84
85
86
87
88
89
90
91
92
93
                sampler.attach_last_update(model.memory.last_update_t)
            aps.append(average_precision_score(y_true, y_pred))
            aucs.append(roc_auc_score(y_true, y_pred))
            batch_cnt += 1
    return float(torch.tensor(aps).mean()), float(torch.tensor(aucs).mean())


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    parser.add_argument(
        "--epochs",
        type=int,
        default=50,
        help="epochs for training on entire dataset",
    )
    parser.add_argument(
        "--batch_size", type=int, default=200, help="Size of each batch"
    )
    parser.add_argument(
        "--embedding_dim",
        type=int,
        default=100,
        help="Embedding dim for link prediction",
    )
    parser.add_argument(
        "--memory_dim", type=int, default=100, help="dimension of memory"
    )
    parser.add_argument(
        "--temporal_dim",
        type=int,
        default=100,
        help="Temporal dimension for time encoding",
    )
    parser.add_argument(
        "--memory_updater",
        type=str,
        default="gru",
        help="Recurrent unit for memory update",
    )
    parser.add_argument(
        "--aggregator",
        type=str,
        default="last",
        help="Aggregation method for memory update",
    )
    parser.add_argument(
        "--n_neighbors",
        type=int,
        default=10,
        help="number of neighbors while doing embedding",
    )
    parser.add_argument(
        "--sampling_method",
        type=str,
        default="topk",
        help="In embedding how node aggregate from its neighor",
    )
    parser.add_argument(
        "--num_heads",
        type=int,
        default=8,
        help="Number of heads for multihead attention mechanism",
    )
    parser.add_argument(
        "--fast_mode",
        action="store_true",
        default=False,
        help="Fast Mode uses batch temporal sampling, history within same batch cannot be obtained",
    )
    parser.add_argument(
        "--simple_mode",
        action="store_true",
        default=False,
        help="Simple Mode directly delete the temporal edges from the original static graph",
    )
    parser.add_argument(
        "--num_negative_samples",
        type=int,
        default=1,
        help="number of negative samplers per positive samples",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        default="wikipedia",
        help="dataset selection wikipedia/reddit",
    )
    parser.add_argument(
        "--k_hop", type=int, default=1, help="sampling k-hop neighborhood"
    )
    parser.add_argument(
        "--not_use_memory",
        action="store_true",
        default=False,
        help="Enable memory for TGN Model disable memory for TGN Model",
    )
181
182
183

    args = parser.parse_args()

184
    assert not (
185
186
        args.fast_mode and args.simple_mode
    ), "you can only choose one sampling mode"
187
188
189
    if args.k_hop != 1:
        assert args.simple_mode, "this k-hop parameter only support simple mode"

190
    if args.dataset == "wikipedia":
191
        data = TemporalWikipediaDataset()
192
    elif args.dataset == "reddit":
193
194
        data = TemporalRedditDataset()
    else:
195
        print("Warning Using Untested Dataset: " + args.dataset)
196
197
198
199
200
201
202
        data = TemporalDataset(args.dataset)

    # Pre-process data, mask new node in test set from original graph
    num_nodes = data.num_nodes()
    num_edges = data.num_edges()

    num_edges = data.num_edges()
203
    trainval_div = int(VALID_SPLIT * num_edges)
204
205

    # Select new node from test set and remove them from entire graph
206
207
208
209
210
211
212
213
    test_split_ts = data.edata["timestamp"][trainval_div]
    test_nodes = (
        torch.cat(
            [data.edges()[0][trainval_div:], data.edges()[1][trainval_div:]]
        )
        .unique()
        .numpy()
    )
214
    test_new_nodes = np.random.choice(
215
216
        test_nodes, int(0.1 * len(test_nodes)), replace=False
    )
217
218
219
220

    in_subg = dgl.in_subgraph(data, test_new_nodes)
    out_subg = dgl.out_subgraph(data, test_new_nodes)
    # Remove edge who happen before the test set to prevent from learning the connection info
221
222
223
224
225
226
    new_node_in_eid_delete = in_subg.edata[dgl.EID][
        in_subg.edata["timestamp"] < test_split_ts
    ]
    new_node_out_eid_delete = out_subg.edata[dgl.EID][
        out_subg.edata["timestamp"] < test_split_ts
    ]
227
    new_node_eid_delete = torch.cat(
228
229
        [new_node_in_eid_delete, new_node_out_eid_delete]
    ).unique()
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    graph_new_node = copy.deepcopy(data)
    # relative order preseved
    graph_new_node.remove_edges(new_node_eid_delete)

    # Now for no new node graph, all edge id need to be removed
    in_eid_delete = in_subg.edata[dgl.EID]
    out_eid_delete = out_subg.edata[dgl.EID]
    eid_delete = torch.cat([in_eid_delete, out_eid_delete]).unique()

    graph_no_new_node = copy.deepcopy(data)
    graph_no_new_node.remove_edges(eid_delete)

    # graph_no_new_node and graph_new_node should have same set of nid

    # Sampler Initialization
    if args.simple_mode:
        fan_out = [args.n_neighbors for _ in range(args.k_hop)]
        sampler = SimpleTemporalSampler(graph_no_new_node, fan_out)
        new_node_sampler = SimpleTemporalSampler(data, fan_out)
        edge_collator = SimpleTemporalEdgeCollator
    elif args.fast_mode:
        sampler = FastTemporalSampler(graph_no_new_node, k=args.n_neighbors)
        new_node_sampler = FastTemporalSampler(data, k=args.n_neighbors)
        edge_collator = FastTemporalEdgeCollator
    else:
        sampler = TemporalSampler(k=args.n_neighbors)
        edge_collator = TemporalEdgeCollator

    neg_sampler = dgl.dataloading.negative_sampler.Uniform(
260
261
        k=args.num_negative_samples
    )
262
    # Set Train, validation, test and new node test id
263
264
265
266
267
    train_seed = torch.arange(int(TRAIN_SPLIT * graph_no_new_node.num_edges()))
    valid_seed = torch.arange(
        int(TRAIN_SPLIT * graph_no_new_node.num_edges()),
        trainval_div - new_node_eid_delete.size(0),
    )
268
    test_seed = torch.arange(
269
270
271
        trainval_div - new_node_eid_delete.size(0),
        graph_no_new_node.num_edges(),
    )
272
    test_new_node_seed = torch.arange(
273
274
275
276
277
278
279
280
281
282
283
284
285
        trainval_div - new_node_eid_delete.size(0), graph_new_node.num_edges()
    )

    g_sampling = (
        None
        if args.fast_mode
        else dgl.add_reverse_edges(graph_no_new_node, copy_edata=True)
    )
    new_node_g_sampling = (
        None
        if args.fast_mode
        else dgl.add_reverse_edges(graph_new_node, copy_edata=True)
    )
286
287
288
289
290
    if not args.fast_mode:
        new_node_g_sampling.ndata[dgl.NID] = new_node_g_sampling.nodes()
        g_sampling.ndata[dgl.NID] = new_node_g_sampling.nodes()

    # we highly recommend that you always set the num_workers=0, otherwise the sampled subgraph may not be correct.
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    train_dataloader = TemporalEdgeDataLoader(
        graph_no_new_node,
        train_seed,
        sampler,
        batch_size=args.batch_size,
        negative_sampler=neg_sampler,
        shuffle=False,
        drop_last=False,
        num_workers=0,
        collator=edge_collator,
        g_sampling=g_sampling,
    )

    valid_dataloader = TemporalEdgeDataLoader(
        graph_no_new_node,
        valid_seed,
        sampler,
        batch_size=args.batch_size,
        negative_sampler=neg_sampler,
        shuffle=False,
        drop_last=False,
        num_workers=0,
        collator=edge_collator,
        g_sampling=g_sampling,
    )

    test_dataloader = TemporalEdgeDataLoader(
        graph_no_new_node,
        test_seed,
        sampler,
        batch_size=args.batch_size,
        negative_sampler=neg_sampler,
        shuffle=False,
        drop_last=False,
        num_workers=0,
        collator=edge_collator,
        g_sampling=g_sampling,
    )

    test_new_node_dataloader = TemporalEdgeDataLoader(
        graph_new_node,
        test_new_node_seed,
        new_node_sampler if args.fast_mode else sampler,
        batch_size=args.batch_size,
        negative_sampler=neg_sampler,
        shuffle=False,
        drop_last=False,
        num_workers=0,
        collator=edge_collator,
        g_sampling=new_node_g_sampling,
    )

    edge_dim = data.edata["feats"].shape[1]
344
345
    num_node = data.num_nodes()

346
347
348
349
350
351
352
353
354
355
356
    model = TGN(
        edge_feat_dim=edge_dim,
        memory_dim=args.memory_dim,
        temporal_dim=args.temporal_dim,
        embedding_dim=args.embedding_dim,
        num_heads=args.num_heads,
        num_nodes=num_node,
        n_neighbors=args.n_neighbors,
        memory_updater_type=args.memory_updater,
        layers=args.k_hop,
    )
357
358
359
360

    criterion = torch.nn.BCEWithLogitsLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
    # Implement Logging mechanism
361
    f = open("logging.txt", "w")
362
363
364
365
    if args.fast_mode:
        sampler.reset()
    try:
        for i in range(args.epochs):
366
367
368
            train_loss = train(
                model, train_dataloader, sampler, criterion, optimizer, args
            )
369

370
            val_ap, val_auc = test_val(
371
372
                model, valid_dataloader, sampler, criterion, args
            )
373
374
375
376
            memory_checkpoint = model.store_memory()
            if args.fast_mode:
                new_node_sampler.sync(sampler)
            test_ap, test_auc = test_val(
377
378
                model, test_dataloader, sampler, criterion, args
            )
379
380
381
382
383
384
            model.restore_memory(memory_checkpoint)
            if args.fast_mode:
                sample_nn = new_node_sampler
            else:
                sample_nn = sampler
            nn_test_ap, nn_test_auc = test_val(
385
386
                model, test_new_node_dataloader, sample_nn, criterion, args
            )
387
388
            log_content = []
            log_content.append(
389
390
391
392
393
394
395
396
397
398
399
400
401
402
                "Epoch: {}; Training Loss: {} | Validation AP: {:.3f} AUC: {:.3f}\n".format(
                    i, train_loss, val_ap, val_auc
                )
            )
            log_content.append(
                "Epoch: {}; Test AP: {:.3f} AUC: {:.3f}\n".format(
                    i, test_ap, test_auc
                )
            )
            log_content.append(
                "Epoch: {}; Test New Node AP: {:.3f} AUC: {:.3f}\n".format(
                    i, nn_test_ap, nn_test_auc
                )
            )
403
404
405

            f.writelines(log_content)
            model.reset_memory()
406
            if i < args.epochs - 1 and args.fast_mode:
407
408
                sampler.reset()
            print(log_content[0], log_content[1], log_content[2])
409
    except KeyboardInterrupt:
410
411
412
413
414
        traceback.print_exc()
        error_content = "Training Interreputed!"
        f.writelines(error_content)
        f.close()
    print("========Training is Done========")