train.py 13.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import argparse
import traceback
import time
import copy

import numpy as np
import dgl
import torch

from tgn import TGN
from data_preprocess import TemporalWikipediaDataset, TemporalRedditDataset, TemporalDataset
from dataloading import (FastTemporalEdgeCollator, FastTemporalSampler,
                         SimpleTemporalEdgeCollator, SimpleTemporalSampler,
                         TemporalEdgeDataLoader, TemporalSampler, TemporalEdgeCollator)

from sklearn.metrics import average_precision_score, roc_auc_score


TRAIN_SPLIT = 0.7
VALID_SPLIT = 0.85

# set random Seed
np.random.seed(2021)
torch.manual_seed(2021)


27
def train(model, dataloader, sampler, criterion, optimizer, args):
28
29
30
31
32
33
34
35
36
37
    model.train()
    total_loss = 0
    batch_cnt = 0
    last_t = time.time()
    for _, positive_pair_g, negative_pair_g, blocks in dataloader:
        optimizer.zero_grad()
        pred_pos, pred_neg = model.embed(
            positive_pair_g, negative_pair_g, blocks)
        loss = criterion(pred_pos, torch.ones_like(pred_pos))
        loss += criterion(pred_neg, torch.zeros_like(pred_neg))
38
39
        total_loss += float(loss)*args.batch_size
        retain_graph = True if batch_cnt == 0 and not args.fast_mode else False
40
41
42
        loss.backward(retain_graph=retain_graph)
        optimizer.step()
        model.detach_memory()
43
44
45
        if not args.not_use_memory:
            model.update_memory(positive_pair_g)
        if args.fast_mode:
46
47
48
49
50
51
52
            sampler.attach_last_update(model.memory.last_update_t)
        print("Batch: ", batch_cnt, "Time: ", time.time()-last_t)
        last_t = time.time()
        batch_cnt += 1
    return total_loss


53
def test_val(model, dataloader, sampler, criterion, args):
54
    model.eval()
55
    batch_size = args.batch_size
56
57
58
59
60
61
62
63
64
65
66
67
68
    total_loss = 0
    aps, aucs = [], []
    batch_cnt = 0
    with torch.no_grad():
        for _, postive_pair_g, negative_pair_g, blocks in dataloader:
            pred_pos, pred_neg = model.embed(
                postive_pair_g, negative_pair_g, blocks)
            loss = criterion(pred_pos, torch.ones_like(pred_pos))
            loss += criterion(pred_neg, torch.zeros_like(pred_neg))
            total_loss += float(loss)*batch_size
            y_pred = torch.cat([pred_pos, pred_neg], dim=0).sigmoid().cpu()
            y_true = torch.cat(
                [torch.ones(pred_pos.size(0)), torch.zeros(pred_neg.size(0))], dim=0)
69
70
71
            if not args.not_use_memory:
                model.update_memory(postive_pair_g)
            if args.fast_mode:
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                sampler.attach_last_update(model.memory.last_update_t)
            aps.append(average_precision_score(y_true, y_pred))
            aucs.append(roc_auc_score(y_true, y_pred))
            batch_cnt += 1
    return float(torch.tensor(aps).mean()), float(torch.tensor(aucs).mean())


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument("--epochs", type=int, default=50,
                        help='epochs for training on entire dataset')
    parser.add_argument("--batch_size", type=int,
                        default=200, help="Size of each batch")
    parser.add_argument("--embedding_dim", type=int, default=100,
                        help="Embedding dim for link prediction")
    parser.add_argument("--memory_dim", type=int, default=100,
                        help="dimension of memory")
    parser.add_argument("--temporal_dim", type=int, default=100,
                        help="Temporal dimension for time encoding")
    parser.add_argument("--memory_updater", type=str, default='gru',
                        help="Recurrent unit for memory update")
    parser.add_argument("--aggregator", type=str, default='last',
                        help="Aggregation method for memory update")
    parser.add_argument("--n_neighbors", type=int, default=10,
                        help="number of neighbors while doing embedding")
    parser.add_argument("--sampling_method", type=str, default='topk',
                        help="In embedding how node aggregate from its neighor")
    parser.add_argument("--num_heads", type=int, default=8,
                        help="Number of heads for multihead attention mechanism")
    parser.add_argument("--fast_mode", action="store_true", default=False,
                        help="Fast Mode uses batch temporal sampling, history within same batch cannot be obtained")
    parser.add_argument("--simple_mode", action="store_true", default=False,
                        help="Simple Mode directly delete the temporal edges from the original static graph")
    parser.add_argument("--num_negative_samples", type=int, default=1,
                        help="number of negative samplers per positive samples")
    parser.add_argument("--dataset", type=str, default="wikipedia",
                        help="dataset selection wikipedia/reddit")
    parser.add_argument("--k_hop", type=int, default=1,
111
112
113
                        help="sampling k-hop neighborhood")
    parser.add_argument("--not_use_memory", action="store_true", default=False,
                        help="Enable memory for TGN Model disable memory for TGN Model")
114
115
116

    args = parser.parse_args()

117
118
    assert not (
        args.fast_mode and args.simple_mode), "you can only choose one sampling mode"
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    if args.k_hop != 1:
        assert args.simple_mode, "this k-hop parameter only support simple mode"

    if args.dataset == 'wikipedia':
        data = TemporalWikipediaDataset()
    elif args.dataset == 'reddit':
        data = TemporalRedditDataset()
    else:
        print("Warning Using Untested Dataset: "+args.dataset)
        data = TemporalDataset(args.dataset)

    # Pre-process data, mask new node in test set from original graph
    num_nodes = data.num_nodes()
    num_edges = data.num_edges()

    num_edges = data.num_edges()
    trainval_div = int(VALID_SPLIT*num_edges)

    # Select new node from test set and remove them from entire graph
    test_split_ts = data.edata['timestamp'][trainval_div]
    test_nodes = torch.cat([data.edges()[0][trainval_div:], data.edges()[
                           1][trainval_div:]]).unique().numpy()
    test_new_nodes = np.random.choice(
        test_nodes, int(0.1*len(test_nodes)), replace=False)

    in_subg = dgl.in_subgraph(data, test_new_nodes)
    out_subg = dgl.out_subgraph(data, test_new_nodes)
    # Remove edge who happen before the test set to prevent from learning the connection info
    new_node_in_eid_delete = in_subg.edata[dgl.EID][in_subg.edata['timestamp'] < test_split_ts]
    new_node_out_eid_delete = out_subg.edata[dgl.EID][out_subg.edata['timestamp'] < test_split_ts]
    new_node_eid_delete = torch.cat(
        [new_node_in_eid_delete, new_node_out_eid_delete]).unique()

    graph_new_node = copy.deepcopy(data)
    # relative order preseved
    graph_new_node.remove_edges(new_node_eid_delete)

    # Now for no new node graph, all edge id need to be removed
    in_eid_delete = in_subg.edata[dgl.EID]
    out_eid_delete = out_subg.edata[dgl.EID]
    eid_delete = torch.cat([in_eid_delete, out_eid_delete]).unique()

    graph_no_new_node = copy.deepcopy(data)
    graph_no_new_node.remove_edges(eid_delete)

    # graph_no_new_node and graph_new_node should have same set of nid

    # Sampler Initialization
    if args.simple_mode:
        fan_out = [args.n_neighbors for _ in range(args.k_hop)]
        sampler = SimpleTemporalSampler(graph_no_new_node, fan_out)
        new_node_sampler = SimpleTemporalSampler(data, fan_out)
        edge_collator = SimpleTemporalEdgeCollator
    elif args.fast_mode:
        sampler = FastTemporalSampler(graph_no_new_node, k=args.n_neighbors)
        new_node_sampler = FastTemporalSampler(data, k=args.n_neighbors)
        edge_collator = FastTemporalEdgeCollator
    else:
        sampler = TemporalSampler(k=args.n_neighbors)
        edge_collator = TemporalEdgeCollator

    neg_sampler = dgl.dataloading.negative_sampler.Uniform(
        k=args.num_negative_samples)
    # Set Train, validation, test and new node test id
    train_seed = torch.arange(int(TRAIN_SPLIT*graph_no_new_node.num_edges()))
    valid_seed = torch.arange(int(
        TRAIN_SPLIT*graph_no_new_node.num_edges()), trainval_div-new_node_eid_delete.size(0))
    test_seed = torch.arange(
        trainval_div-new_node_eid_delete.size(0), graph_no_new_node.num_edges())
    test_new_node_seed = torch.arange(
        trainval_div-new_node_eid_delete.size(0), graph_new_node.num_edges())

    g_sampling = None if args.fast_mode else dgl.add_reverse_edges(
        graph_no_new_node, copy_edata=True)
    new_node_g_sampling = None if args.fast_mode else dgl.add_reverse_edges(
        graph_new_node, copy_edata=True)
    if not args.fast_mode:
        new_node_g_sampling.ndata[dgl.NID] = new_node_g_sampling.nodes()
        g_sampling.ndata[dgl.NID] = new_node_g_sampling.nodes()

    # we highly recommend that you always set the num_workers=0, otherwise the sampled subgraph may not be correct.
    train_dataloader = TemporalEdgeDataLoader(graph_no_new_node,
                                              train_seed,
                                              sampler,
                                              batch_size=args.batch_size,
                                              negative_sampler=neg_sampler,
                                              shuffle=False,
                                              drop_last=False,
                                              num_workers=0,
                                              collator=edge_collator,
                                              g_sampling=g_sampling)

    valid_dataloader = TemporalEdgeDataLoader(graph_no_new_node,
                                              valid_seed,
                                              sampler,
                                              batch_size=args.batch_size,
                                              negative_sampler=neg_sampler,
                                              shuffle=False,
                                              drop_last=False,
                                              num_workers=0,
                                              collator=edge_collator,
                                              g_sampling=g_sampling)

    test_dataloader = TemporalEdgeDataLoader(graph_no_new_node,
                                             test_seed,
                                             sampler,
                                             batch_size=args.batch_size,
                                             negative_sampler=neg_sampler,
                                             shuffle=False,
                                             drop_last=False,
                                             num_workers=0,
                                             collator=edge_collator,
                                             g_sampling=g_sampling)

    test_new_node_dataloader = TemporalEdgeDataLoader(graph_new_node,
                                                      test_new_node_seed,
                                                      new_node_sampler if args.fast_mode else sampler,
                                                      batch_size=args.batch_size,
                                                      negative_sampler=neg_sampler,
                                                      shuffle=False,
                                                      drop_last=False,
                                                      num_workers=0,
                                                      collator=edge_collator,
                                                      g_sampling=new_node_g_sampling)

    edge_dim = data.edata['feats'].shape[1]
    num_node = data.num_nodes()

    model = TGN(edge_feat_dim=edge_dim,
                memory_dim=args.memory_dim,
                temporal_dim=args.temporal_dim,
                embedding_dim=args.embedding_dim,
                num_heads=args.num_heads,
                num_nodes=num_node,
                n_neighbors=args.n_neighbors,
254
255
                memory_updater_type=args.memory_updater,
                layers=args.k_hop)
256
257
258
259
260
261
262
263
264
265

    criterion = torch.nn.BCEWithLogitsLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
    # Implement Logging mechanism
    f = open("logging.txt", 'w')
    if args.fast_mode:
        sampler.reset()
    try:
        for i in range(args.epochs):
            train_loss = train(model, train_dataloader, sampler,
266
267
                               criterion, optimizer, args)

268
            val_ap, val_auc = test_val(
269
                model, valid_dataloader, sampler, criterion, args)
270
271
272
273
            memory_checkpoint = model.store_memory()
            if args.fast_mode:
                new_node_sampler.sync(sampler)
            test_ap, test_auc = test_val(
274
                model, test_dataloader, sampler, criterion, args)
275
276
277
278
279
280
            model.restore_memory(memory_checkpoint)
            if args.fast_mode:
                sample_nn = new_node_sampler
            else:
                sample_nn = sampler
            nn_test_ap, nn_test_auc = test_val(
281
                model, test_new_node_dataloader, sample_nn, criterion, args)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            log_content = []
            log_content.append("Epoch: {}; Training Loss: {} | Validation AP: {:.3f} AUC: {:.3f}\n".format(
                i, train_loss, val_ap, val_auc))
            log_content.append(
                "Epoch: {}; Test AP: {:.3f} AUC: {:.3f}\n".format(i, test_ap, test_auc))
            log_content.append("Epoch: {}; Test New Node AP: {:.3f} AUC: {:.3f}\n".format(
                i, nn_test_ap, nn_test_auc))

            f.writelines(log_content)
            model.reset_memory()
            if i < args.epochs-1 and args.fast_mode:
                sampler.reset()
            print(log_content[0], log_content[1], log_content[2])
    except:
        traceback.print_exc()
        error_content = "Training Interreputed!"
        f.writelines(error_content)
        f.close()
    print("========Training is Done========")