entity_classify.py 5.22 KB
Newer Older
1
2
3
4
5
6
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import time
7
8

import numpy as np
9
10
11
import torch as th
import torch.nn as nn
import torch.nn.functional as F
12
from model import EntityClassify
13

14
15
16
from dgl.data.rdf import AIFBDataset, AMDataset, BGSDataset, MUTAGDataset


17
18
def main(args):
    # load graph data
19
    if args.dataset == "aifb":
20
        dataset = AIFBDataset()
21
    elif args.dataset == "mutag":
22
        dataset = MUTAGDataset()
23
    elif args.dataset == "bgs":
24
        dataset = BGSDataset()
25
    elif args.dataset == "am":
26
        dataset = AMDataset()
27
28
29
    else:
        raise ValueError()

30
    g = dataset[0]
31
32
    category = dataset.predict_category
    num_classes = dataset.num_classes
33
34
    train_mask = g.nodes[category].data.pop("train_mask")
    test_mask = g.nodes[category].data.pop("test_mask")
35
36
    train_idx = th.nonzero(train_mask, as_tuple=False).squeeze()
    test_idx = th.nonzero(test_mask, as_tuple=False).squeeze()
37
    labels = g.nodes[category].data.pop("labels")
38
39
40
41
42
43
44
    category_id = len(g.ntypes)
    for i, ntype in enumerate(g.ntypes):
        if ntype == category:
            category_id = i

    # split dataset into train, validate, test
    if args.validation:
45
46
        val_idx = train_idx[: len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5 :]
47
48
49
50
51
52
53
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
54
        g = g.to("cuda:%d" % args.gpu)
55
56
57
58
59
        labels = labels.cuda()
        train_idx = train_idx.cuda()
        test_idx = test_idx.cuda()

    # create model
60
61
62
63
64
65
66
67
68
    model = EntityClassify(
        g,
        args.n_hidden,
        num_classes,
        num_bases=args.n_bases,
        num_hidden_layers=args.n_layers - 2,
        dropout=args.dropout,
        use_self_loop=args.use_self_loop,
    )
69
70
71
72
73

    if use_cuda:
        model.cuda()

    # optimizer
74
75
76
    optimizer = th.optim.Adam(
        model.parameters(), lr=args.lr, weight_decay=args.l2norm
    )
77
78
79
80
81
82
83
84
85

    # training loop
    print("start training...")
    dur = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        if epoch > 5:
            t0 = time.time()
86
        logits = model()[category]
87
88
89
90
91
92
93
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        loss.backward()
        optimizer.step()
        t1 = time.time()

        if epoch > 5:
            dur.append(t1 - t0)
94
95
96
        train_acc = th.sum(
            logits[train_idx].argmax(dim=1) == labels[train_idx]
        ).item() / len(train_idx)
97
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
98
99
100
101
102
103
104
105
106
107
108
109
110
        val_acc = th.sum(
            logits[val_idx].argmax(dim=1) == labels[val_idx]
        ).item() / len(val_idx)
        print(
            "Epoch {:05d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".format(
                epoch,
                train_acc,
                loss.item(),
                val_acc,
                val_loss.item(),
                np.average(dur),
            )
        )
111
    print()
112
113
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)
114
115

    model.eval()
116
    logits = model.forward()[category]
117
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
118
119
120
121
122
123
124
125
    test_acc = th.sum(
        logits[test_idx].argmax(dim=1) == labels[test_idx]
    ).item() / len(test_idx)
    print(
        "Test Acc: {:.4f} | Test loss: {:.4f}".format(
            test_acc, test_loss.item()
        )
    )
126
127
    print()

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="RGCN")
    parser.add_argument(
        "--dropout", type=float, default=0, help="dropout probability"
    )
    parser.add_argument(
        "--n-hidden", type=int, default=16, help="number of hidden units"
    )
    parser.add_argument("--gpu", type=int, default=-1, help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2, help="learning rate")
    parser.add_argument(
        "--n-bases",
        type=int,
        default=-1,
        help="number of filter weight matrices, default: -1 [use all]",
    )
    parser.add_argument(
        "--n-layers", type=int, default=2, help="number of propagation rounds"
    )
    parser.add_argument(
        "-e",
        "--n-epochs",
        type=int,
        default=50,
        help="number of training epochs",
    )
    parser.add_argument(
        "-d", "--dataset", type=str, required=True, help="dataset to use"
    )
    parser.add_argument(
        "--model_path", type=str, default=None, help="path for save the model"
    )
    parser.add_argument("--l2norm", type=float, default=0, help="l2 norm coef")
    parser.add_argument(
        "--use-self-loop",
        default=False,
        action="store_true",
        help="include self feature as a special relation",
    )
168
    fp = parser.add_mutually_exclusive_group(required=False)
169
170
    fp.add_argument("--validation", dest="validation", action="store_true")
    fp.add_argument("--testing", dest="validation", action="store_false")
171
172
173
174
175
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)