entity_classify.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
"""Modeling Relational Data with Graph Convolutional Networks
Paper: https://arxiv.org/abs/1703.06103
Reference Code: https://github.com/tkipf/relational-gcn
"""
import argparse
import numpy as np
import time
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

import dgl.function as fn
from dgl.data.rdf import AIFB, MUTAG, BGS, AM

class RelGraphConvHetero(nn.Module):
    r"""Relational graph convolution layer.

    Parameters
    ----------
    in_feat : int
        Input feature size.
    out_feat : int
        Output feature size.
    rel_names : int
        Relation names.
    regularizer : str
        Which weight regularizer to use "basis" or "bdd"
    num_bases : int, optional
        Number of bases. If is none, use number of relations. Default: None.
    bias : bool, optional
        True if bias is added. Default: True
    activation : callable, optional
        Activation function. Default: None
    self_loop : bool, optional
        True to include self loop message. Default: False
37
38
39
    use_weight : bool, optional
        If True, multiply the input node feature with a learnable weight matrix
        before message passing.
40
41
42
43
44
45
46
47
48
49
50
51
    dropout : float, optional
        Dropout rate. Default: 0.0
    """
    def __init__(self,
                 in_feat,
                 out_feat,
                 rel_names,
                 regularizer="basis",
                 num_bases=None,
                 bias=True,
                 activation=None,
                 self_loop=False,
52
                 use_weight=True,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
                 dropout=0.0):
        super(RelGraphConvHetero, self).__init__()
        self.in_feat = in_feat
        self.out_feat = out_feat
        self.rel_names = rel_names
        self.num_rels = len(rel_names)
        self.regularizer = regularizer
        self.num_bases = num_bases
        if self.num_bases is None or self.num_bases > self.num_rels or self.num_bases < 0:
            self.num_bases = self.num_rels
        self.bias = bias
        self.activation = activation
        self.self_loop = self_loop

67
68
69
70
71
72
73
74
75
76
77
78
79
80
        self.use_weight = use_weight
        if use_weight:
            if regularizer == "basis":
                # add basis weights
                self.weight = nn.Parameter(th.Tensor(self.num_bases, self.in_feat, self.out_feat))
                if self.num_bases < self.num_rels:
                    # linear combination coefficients
                    self.w_comp = nn.Parameter(th.Tensor(self.num_rels, self.num_bases))
                nn.init.xavier_uniform_(self.weight, gain=nn.init.calculate_gain('relu'))
                if self.num_bases < self.num_rels:
                    nn.init.xavier_uniform_(self.w_comp,
                                            gain=nn.init.calculate_gain('relu'))
            else:
                raise ValueError("Only basis regularizer is supported.")
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

        # bias
        if self.bias:
            self.h_bias = nn.Parameter(th.Tensor(out_feat))
            nn.init.zeros_(self.h_bias)

        # weight for self loop
        if self.self_loop:
            self.loop_weight = nn.Parameter(th.Tensor(in_feat, out_feat))
            nn.init.xavier_uniform_(self.loop_weight,
                                    gain=nn.init.calculate_gain('relu'))

        self.dropout = nn.Dropout(dropout)

    def basis_weight(self):
        """Message function for basis regularizer"""
        if self.num_bases < self.num_rels:
            # generate all weights from bases
            weight = self.weight.view(self.num_bases,
                                      self.in_feat * self.out_feat)
            weight = th.matmul(self.w_comp, weight).view(
                self.num_rels, self.in_feat, self.out_feat)
        else:
            weight = self.weight
        return {self.rel_names[i] : w.squeeze(0) for i, w in enumerate(th.split(weight, 1, dim=0))}

    def forward(self, g, xs):
108
        """Forward computation
109
110
111
112
113

        Parameters
        ----------
        g : DGLHeteroGraph
            Input graph.
114
        xs : dict[str, torch.Tensor]
115
116
117
118
119
120
121
122
            Node feature for each node type.

        Returns
        -------
        list of torch.Tensor
            New node features for each node type.
        """
        g = g.local_var()
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        for ntype in g.ntypes:
            g.nodes[ntype].data['x'] = xs[ntype]
        if self.use_weight:
            ws = self.basis_weight()
            funcs = {}
            for i, (srctype, etype, dsttype) in enumerate(g.canonical_etypes):
                g.nodes[srctype].data['h%d' % i] = th.matmul(
                    g.nodes[srctype].data['x'], ws[etype])
                funcs[(srctype, etype, dsttype)] = (fn.copy_u('h%d' % i, 'm'), fn.mean('m', 'h'))
        else:
            funcs = {}
            for i, (srctype, etype, dsttype) in enumerate(g.canonical_etypes):
                g.nodes[srctype].data['h%d' % i] = g.nodes[srctype].data['x']
                funcs[(srctype, etype, dsttype)] = (fn.copy_u('h%d' % i, 'm'), fn.mean('m', 'h'))
137
138
139
        # message passing
        g.multi_update_all(funcs, 'sum')

140
141
142
        hs = {ntype : g.nodes[ntype].data['h'] for ntype in g.ntypes}
        new_hs = {}
        for ntype, h in hs.items():
143
144
            # apply bias and activation
            if self.self_loop:
145
                h = h + th.matmul(xs[ntype], self.loop_weight)
146
147
148
149
150
            if self.bias:
                h = h + self.h_bias
            if self.activation:
                h = self.activation(h)
            h = self.dropout(h)
151
152
            new_hs[ntype] = h
        return new_hs
153

154
class RelGraphEmbed(nn.Module):
155
156
157
    r"""Embedding layer for featureless heterograph."""
    def __init__(self,
                 g,
158
159
                 embed_size,
                 embed_name='embed',
160
161
                 activation=None,
                 dropout=0.0):
162
        super(RelGraphEmbed, self).__init__()
163
        self.g = g
164
165
        self.embed_size = embed_size
        self.embed_name = embed_name
166
        self.activation = activation
167
        self.dropout = nn.Dropout(dropout)
168
169

        # create weight embeddings for each node for each relation
170
        self.embeds = nn.ParameterDict()
171
172
        for ntype in g.ntypes:
            embed = nn.Parameter(th.Tensor(g.number_of_nodes(ntype), self.embed_size))
173
            nn.init.xavier_uniform_(embed, gain=nn.init.calculate_gain('relu'))
174
            self.embeds[ntype] = embed
175
176


177
178
    def forward(self, block=None):
        """Forward computation
179

180
181
182
183
184
185
        Parameters
        ----------
        block : DGLHeteroGraph, optional
            If not specified, directly return the full graph with embeddings stored in
            :attr:`embed_name`. Otherwise, extract and store the embeddings to the block
            graph and return.
186
187
188

        Returns
        -------
189
190
        DGLHeteroGraph
            The block graph fed with embeddings.
191
        """
192
        return self.embeds
193
194
195
196
197
198
199
200
201
202
203
204
205
206

class EntityClassify(nn.Module):
    def __init__(self,
                 g,
                 h_dim, out_dim,
                 num_bases,
                 num_hidden_layers=1,
                 dropout=0,
                 use_self_loop=False):
        super(EntityClassify, self).__init__()
        self.g = g
        self.h_dim = h_dim
        self.out_dim = out_dim
        self.rel_names = list(set(g.etypes))
207
        self.rel_names.sort()
208
209
210
211
212
        self.num_bases = None if num_bases < 0 else num_bases
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.use_self_loop = use_self_loop

213
        self.embed_layer = RelGraphEmbed(g, self.h_dim)
214
        self.layers = nn.ModuleList()
215
216
217
218
219
        # i2h
        self.layers.append(RelGraphConvHetero(
            self.h_dim, self.h_dim, self.rel_names, "basis",
            self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
            dropout=self.dropout, use_weight=False))
220
221
222
223
224
225
226
227
228
        # h2h
        for i in range(self.num_hidden_layers):
            self.layers.append(RelGraphConvHetero(
                self.h_dim, self.h_dim, self.rel_names, "basis",
                self.num_bases, activation=F.relu, self_loop=self.use_self_loop,
                dropout=self.dropout))
        # h2o
        self.layers.append(RelGraphConvHetero(
            self.h_dim, self.out_dim, self.rel_names, "basis",
229
            self.num_bases, activation=None,
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            self_loop=self.use_self_loop))

    def forward(self):
        h = self.embed_layer()
        for layer in self.layers:
            h = layer(self.g, h)
        return h

def main(args):
    # load graph data
    if args.dataset == 'aifb':
        dataset = AIFB()
    elif args.dataset == 'mutag':
        dataset = MUTAG()
    elif args.dataset == 'bgs':
        dataset = BGS()
    elif args.dataset == 'am':
        dataset = AM()
    else:
        raise ValueError()

    g = dataset.graph
    category = dataset.predict_category
    num_classes = dataset.num_classes
    train_idx = dataset.train_idx
    test_idx = dataset.test_idx
    labels = dataset.labels
    category_id = len(g.ntypes)
    for i, ntype in enumerate(g.ntypes):
        if ntype == category:
            category_id = i

    # split dataset into train, validate, test
    if args.validation:
        val_idx = train_idx[:len(train_idx) // 5]
        train_idx = train_idx[len(train_idx) // 5:]
    else:
        val_idx = train_idx

    # check cuda
    use_cuda = args.gpu >= 0 and th.cuda.is_available()
    if use_cuda:
        th.cuda.set_device(args.gpu)
        labels = labels.cuda()
        train_idx = train_idx.cuda()
        test_idx = test_idx.cuda()

    # create model
    model = EntityClassify(g,
                           args.n_hidden,
                           num_classes,
                           num_bases=args.n_bases,
                           num_hidden_layers=args.n_layers - 2,
                           dropout=args.dropout,
                           use_self_loop=args.use_self_loop)

    if use_cuda:
        model.cuda()

    # optimizer
    optimizer = th.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.l2norm)

    # training loop
    print("start training...")
    dur = []
    model.train()
    for epoch in range(args.n_epochs):
        optimizer.zero_grad()
        if epoch > 5:
            t0 = time.time()
300
        logits = model()[category]
301
302
303
304
305
306
307
308
309
310
311
312
313
        loss = F.cross_entropy(logits[train_idx], labels[train_idx])
        loss.backward()
        optimizer.step()
        t1 = time.time()

        if epoch > 5:
            dur.append(t1 - t0)
        train_acc = th.sum(logits[train_idx].argmax(dim=1) == labels[train_idx]).item() / len(train_idx)
        val_loss = F.cross_entropy(logits[val_idx], labels[val_idx])
        val_acc = th.sum(logits[val_idx].argmax(dim=1) == labels[val_idx]).item() / len(val_idx)
        print("Epoch {:05d} | Train Acc: {:.4f} | Train Loss: {:.4f} | Valid Acc: {:.4f} | Valid loss: {:.4f} | Time: {:.4f}".
              format(epoch, train_acc, loss.item(), val_acc, val_loss.item(), np.average(dur)))
    print()
314
315
    if args.model_path is not None:
        th.save(model.state_dict(), args.model_path)
316
317

    model.eval()
318
    logits = model.forward()[category]
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    test_loss = F.cross_entropy(logits[test_idx], labels[test_idx])
    test_acc = th.sum(logits[test_idx].argmax(dim=1) == labels[test_idx]).item() / len(test_idx)
    print("Test Acc: {:.4f} | Test loss: {:.4f}".format(test_acc, test_loss.item()))
    print()

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='RGCN')
    parser.add_argument("--dropout", type=float, default=0,
            help="dropout probability")
    parser.add_argument("--n-hidden", type=int, default=16,
            help="number of hidden units")
    parser.add_argument("--gpu", type=int, default=-1,
            help="gpu")
    parser.add_argument("--lr", type=float, default=1e-2,
            help="learning rate")
    parser.add_argument("--n-bases", type=int, default=-1,
            help="number of filter weight matrices, default: -1 [use all]")
    parser.add_argument("--n-layers", type=int, default=2,
            help="number of propagation rounds")
    parser.add_argument("-e", "--n-epochs", type=int, default=50,
            help="number of training epochs")
    parser.add_argument("-d", "--dataset", type=str, required=True,
            help="dataset to use")
342
343
    parser.add_argument("--model_path", type=str, default=None,
            help='path for save the model')
344
345
346
347
348
349
350
351
352
353
354
355
    parser.add_argument("--l2norm", type=float, default=0,
            help="l2 norm coef")
    parser.add_argument("--use-self-loop", default=False, action='store_true',
            help="include self feature as a special relation")
    fp = parser.add_mutually_exclusive_group(required=False)
    fp.add_argument('--validation', dest='validation', action='store_true')
    fp.add_argument('--testing', dest='validation', action='store_false')
    parser.set_defaults(validation=True)

    args = parser.parse_args()
    print(args)
    main(args)