kernel.cc 25 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 *  Copyright (c) 2020 by Contributors
 * \file array/kernel.cc
 * \brief New kernels
 */
#include <dgl/packed_func_ext.h>
#include <dgl/base_heterograph.h>

Zhi Lin's avatar
Zhi Lin committed
9
10
11
12
#ifdef USE_TVM
#include <featgraph.h>
#endif  // USE_TVM

13
14
#include "kernel_decl.h"
#include "../c_api_common.h"
15
#include "./check.h"
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

using namespace dgl::runtime;

namespace dgl {
namespace aten {
namespace {

}  // namespace

/*! \brief Generalized Sparse Matrix-Matrix Multiplication. */
void SpMM(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out,
31
          std::vector<NDArray> out_aux) {
32
  // TODO(zihao): format tuning
33
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
34
35
36
37
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
38
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
39
        if (format == SparseFormat::kCSC) {
40
          SpMMCsr<XPU, IdType, bits>(
41
42
43
              op, reduce, bcast, graph->GetCSCMatrix(0),
              ufeat, efeat, out, out_aux);
        } else if (format == SparseFormat::kCOO) {
44
          SpMMCoo<XPU, IdType, bits>(
45
46
47
              op, reduce, bcast, graph->GetCOOMatrix(0),
              ufeat, efeat, out, out_aux);
        } else {
48
          LOG(FATAL) << "SpMM only supports CSC and COO formats";
49
50
51
52
53
54
        }
      });
    });
  });
}

55
56
57
/*! \brief Generalized Sparse Matrix-Matrix Multiplication with hetero-graph support. */
void SpMMHetero(const std::string& op, const std::string& reduce,
          HeteroGraphPtr graph,
58
59
60
61
          const std::vector<NDArray>& ufeat_vec,
          const std::vector<NDArray>& efeat_vec,
          std::vector<NDArray>* out,
          std::vector<std::vector<NDArray>>* out_aux) {
62
63
64
65
66
67
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);

  std::vector<CSRMatrix> vec_graph;
  std::vector<dgl_type_t> ufeat_eid;
  std::vector<dgl_type_t> efeat_eid;
  std::vector<dgl_type_t> out_eid;
68
69
70
  auto pair = graph->meta_graph()->FindEdge(0);  // first etype
  NDArray ufeat_etype0 = (ufeat_vec.size() == 0) ? NullArray() : ufeat_vec[pair.first];
  NDArray efeat_etype0 = (efeat_vec.size() == 0) ? NullArray() : efeat_vec[0];
71
72
73
74
75
76
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
    vec_graph.push_back(graph->GetCSCMatrix(etype));
    auto pair = graph->meta_graph()->FindEdge(etype);
    ufeat_eid.push_back(pair.first);
    efeat_eid.push_back(etype);
    out_eid.push_back(pair.second);
77
78
79
80
    if (ufeat_etype0->shape[1] != ufeat_vec[pair.first]->shape[1])
      LOG(FATAL) << "Column width of the input node features of all etypes must be same.";
    if (efeat_etype0->shape[1] != efeat_vec[etype]->shape[1])
      LOG(FATAL) << "Column width of the input edge features of all etypes must be same.";
81
  }
82
  const auto& bcast = CalcBcastOff(op, ufeat_etype0, efeat_etype0);
83

84
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SpMM", {
85
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
86
      ATEN_FLOAT_BITS_SWITCH((*out)[out_eid[0]]->dtype, bits, "Feature data", {
87
88
89
90
91
92
        if (format == SparseFormat::kCSC) {
          SpMMCsrHetero<XPU, IdType, bits>(
              op, reduce, bcast, vec_graph,
              ufeat_vec, efeat_vec, out, out_aux,
              ufeat_eid, out_eid);
        } else {
93
94
95
          // TODO(Israt): Add support for COO format
          LOG(FATAL) << "SpMM only supports CSC format for graphs with number "
                     << "of relation types > 1";
96
97
98
99
100
101
102
        }
      });
    });
  });
}


103
104
105
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMM(const std::string& op,
           HeteroGraphPtr graph,
106
107
           NDArray lhs,
           NDArray rhs,
108
           NDArray out,
109
           int lhs_target,
110
           int rhs_target) {
111
  // TODO(zihao): format tuning
112
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
113
  const auto &bcast = CalcBcastOff(op, lhs, rhs);
114
115
116

  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
117
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "Feature data", {
118
        if (format == SparseFormat::kCSR) {
119
          SDDMMCsr<XPU, IdType, bits>(
120
              op, bcast, graph->GetCSRMatrix(0),
121
              lhs, rhs, out, lhs_target, rhs_target);
122
        } else if (format == SparseFormat::kCOO) {
123
          SDDMMCoo<XPU, IdType, bits>(
124
              op, bcast, graph->GetCOOMatrix(0),
125
              lhs, rhs, out, lhs_target, rhs_target);
126
        } else {
127
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
128
129
130
131
132
133
        }
      });
    });
  });
}

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
/*!
 * \brief Find the src/dst/etype id based on the target 'u', 'v' or 'e'.
 *
 * \param graph The input graph.
 * \param target 'u', 'v' or 'e'. The target of the lhs or rhs data of an etype.
 * \param etype Relation type of the input graph.
 */
int get_typeid_by_target(HeteroGraphPtr graph, int target, dgl_type_t etype) {
  auto pair = graph->meta_graph()->FindEdge(etype);
  if (target == 0)
    return pair.first;
  if (target == 2)
    return pair.second;
  return etype;
}

150
151
152
153
154
155
156
157
/*! \brief Generalized Sampled Dense-Dense Matrix Multiplication. */
void SDDMMHetero(const std::string& op,
           HeteroGraphPtr graph,
           std::vector<NDArray> lhs,
           std::vector<NDArray> rhs,
           std::vector<NDArray> out,
           int lhs_target,
           int rhs_target) {
158
  SparseFormat format = graph->SelectFormat(0, COO_CODE);
159
160
161
162

  std::vector<dgl_type_t> lhs_eid;
  std::vector<dgl_type_t> rhs_eid;
  for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
163
164
    lhs_eid.push_back(get_typeid_by_target(graph, lhs_target, etype));
    rhs_eid.push_back(get_typeid_by_target(graph, rhs_target, etype));
165
166
167
  }
  const auto &bcast = CalcBcastOff(op, lhs[lhs_eid[0]], rhs[rhs_eid[0]]);

168
  ATEN_XPU_SWITCH_CUDA(graph->Context().device_type, XPU, "SDDMM", {
169
170
171
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out[rhs_eid[0]]->dtype, bits, "Feature data", {
        if (format == SparseFormat::kCSR) {
172
173
174
175
          std::vector<CSRMatrix> vec_csr;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_csr.push_back(graph->GetCSRMatrix(etype));
          }
176
177
178
179
          SDDMMCsrHetero<XPU, IdType, bits>(
              op, bcast, vec_csr,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
180
181
182
183
184
185
186
187
188
        } else if (format == SparseFormat::kCOO) {
          std::vector<COOMatrix> vec_coo;
          for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
            vec_coo.push_back(graph->GetCOOMatrix(etype));
          }
          SDDMMCooHetero<XPU, IdType, bits>(
              op, bcast, vec_coo,
              lhs, rhs, out, lhs_target, rhs_target,
              lhs_eid, rhs_eid);
189
        } else {
190
          LOG(FATAL) << "SDDMM only supports CSR and COO formats";
191
192
193
194
195
196
        }
      });
    });
  });
}

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

/*! \brief Generalized Edge_softmax op for forward */
void Edge_softmax_forward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray ufeat,
          NDArray efeat,
          NDArray out) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, efeat);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data", {
        Edge_softmax_csr_forward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), ufeat, efeat, out);
      });
    });
  });
}


/*! \brief Generalized Edge_softmax op for backward */
void Edge_softmax_backward(const std::string& op,
          HeteroGraphPtr graph,
          NDArray out,
          NDArray sds,
          NDArray back_out,
          NDArray ufeat) {
  // TODO(zhejiang): add gpu op for edge_softmax
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
  const auto& bcast = CalcBcastOff(op, ufeat, sds);

  ATEN_XPU_SWITCH(graph->Context().device_type, XPU, "edge_softmax_back", {
    ATEN_ID_TYPE_SWITCH(graph->DataType(), IdType, {
      ATEN_FLOAT_BITS_SWITCH(out->dtype, bits, "edge_softmax out data_back", {
        Edge_softmax_csr_backward<XPU, IdType, bits>(
          op, bcast, graph->GetCSCMatrix(0), out, sds, back_out);
      });
    });
  });
}


241
NDArray GetEdgeMapping(HeteroGraphRef graph) {
242
  SparseFormat format = graph->SelectFormat(0, CSC_CODE);
243
244
245
246
247
248
249
  if (format == SparseFormat::kCSC) {
    return graph.sptr()->GetCSCMatrix(0).data;
  } else {
    return NullArray();
  }
}

250
251
252
253
254
255
256
257
/*! \brief Segment reduce dispatch function. */
void SegmentReduceDispatch(const std::string& op,
                           NDArray feat,
                           NDArray offsets,
                           NDArray out,
                           NDArray arg) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "SegmentReduce", {
    ATEN_ID_TYPE_SWITCH(offsets->dtype, IdType, {
258
259
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
          SegmentReduce<XPU, IdType, bits>(op, feat, offsets, out, arg);
260
261
262
263
264
      });
    });
  });
}

265
266
267
268
269
270
271
272
273
274
275
/*! \brief Scatter Add (on first dimension) dispatch function. */
void ScatterAddDispatch(NDArray feat, NDArray idx, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        ScatterAdd<XPU, IdType, bits>(feat, idx, out);
      });
    });
  });
}

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*! \brief Update gradients (reduce op max/min) dispatch function on heterogeneous graph. */
void UpdateGradMinMaxDispatchHetero(const HeteroGraphPtr& graph,
                        const std::string& op,
                        const std::vector<NDArray>& feat,
                        const std::vector<NDArray>& idx,
                        const std::vector<NDArray>& idx_etype,
                        std::vector<NDArray>* out) {
  auto pair = graph->meta_graph()->FindEdge(0);  // checking the first etype
  auto src_id = pair.first;
  ATEN_XPU_SWITCH_CUDA(feat[src_id]->ctx.device_type, XPU, "ScatterAdd", {
    ATEN_ID_TYPE_SWITCH(idx[src_id]->dtype, IdType, {
      ATEN_FLOAT_BITS_SWITCH(feat[src_id]->dtype, bits, "Feature data", {
        UpdateGradMinMax_hetero<XPU, IdType, bits>(graph, op, feat, idx, idx_etype, out);
      });
    });
  });
}

294
295
296
297
/*! \brief Backward segment cmp dispatch function.*/
void BackwardSegmentCmpDispatch(NDArray feat, NDArray arg, NDArray out) {
  ATEN_XPU_SWITCH_CUDA(feat->ctx.device_type, XPU, "BackwardSegmentCmp", {
    ATEN_ID_TYPE_SWITCH(arg->dtype, IdType, {
298
299
      ATEN_FLOAT_BITS_SWITCH(feat->dtype, bits, "Feature data", {
        BackwardSegmentCmp<XPU, IdType, bits>(feat, arg, out);
300
301
302
303
304
      });
    });
  });
}

305
306
307
308
309
std::pair<CSRMatrix, NDArray> CSRMM(
    CSRMatrix A,
    NDArray A_weights,
    CSRMatrix B,
    NDArray B_weights) {
310
311
312
  CHECK_EQ(A.num_cols, B.num_rows) <<
    "The number of nodes of destination node type of the first graph must be the "
    "same as the number of nodes of source node type of the second graph.";
313
314
315
316
317
318
319
320
321
  CheckCtx(
      A.indptr->ctx,
      {A_weights, B_weights},
      {"A's edge weights", "B's edge weights"});
  CHECK_EQ(A.indptr->ctx, B.indptr->ctx) << "Device of two graphs must match.";
  CHECK_EQ(A.indptr->dtype, B.indptr->dtype) << "ID types of two graphs must match.";
  CHECK_EQ(A_weights->dtype, B_weights->dtype) << "Data types of two edge weights must match.";

  std::pair<CSRMatrix, NDArray> ret;
322
  ATEN_XPU_SWITCH_CUDA(A.indptr->ctx.device_type, XPU, "CSRMM", {
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    ATEN_ID_TYPE_SWITCH(A.indptr->dtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
        ret = CSRMM<XPU, IdType, DType>(A, A_weights, B, B_weights);
      });
    });
  });
  return ret;
}

std::pair<CSRMatrix, NDArray> CSRSum(
    const std::vector<CSRMatrix>& A,
    const std::vector<NDArray>& A_weights) {
  CHECK(A.size() > 0) << "The list of graphs must not be empty.";
  CHECK_EQ(A.size(), A_weights.size()) <<
    "The list of edge weights must have the same length as the list of graphs.";
338
339
340
341
342
  const auto ctx = A[0].indptr->ctx;
  const auto idtype = A[0].indptr->dtype;
  const auto dtype = A_weights[0]->dtype;
  const auto num_rows = A[0].num_rows;
  const auto num_cols = A[0].num_cols;
343
344
345
346
347
348
349
350
351
  for (size_t i = 0; i < A.size(); ++i) {
    CHECK_EQ(A[i].indptr->ctx, ctx) << "The devices of all graphs must be equal.";
    CHECK_EQ(A[i].indptr->dtype, idtype) << "The ID types of all graphs must be equal.";
    CHECK_EQ(A[i].indices->shape[0], A_weights[i]->shape[0]) <<
      "Shape of edge weights does not match the number of edges.";
    CHECK_EQ(A_weights[i]->ctx, ctx) <<
      "The devices of edge weights must be the same as that of the graphs.";
    CHECK_EQ(A_weights[i]->dtype, dtype) <<
      "The data types of all edge weights must be equal.";
352
353
    CHECK_EQ(A[i].num_rows, num_rows) << "Graphs must have the same number of nodes.";
    CHECK_EQ(A[i].num_cols, num_cols) << "Graphs must have the same number of nodes.";
354
355
356
  }

  std::pair<CSRMatrix, NDArray> ret;
357
  ATEN_XPU_SWITCH_CUDA(ctx.device_type, XPU, "CSRSum", {
358
359
360
361
362
363
364
365
366
    ATEN_ID_TYPE_SWITCH(idtype, IdType, {
      ATEN_FLOAT_TYPE_SWITCH(dtype, DType, "Edge weights", {
        ret = CSRSum<XPU, IdType, DType>(A, A_weights);
      });
    });
  });
  return ret;
}

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    NDArray U = args[3];
    NDArray E = args[4];
    NDArray V = args[5];
    NDArray ArgU = args[6];
    NDArray ArgE = args[7];
    CheckCtx(graph->Context(), {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CheckContiguous({U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
        {0, 1, 2, 2, 2},
        {U, E, V, ArgU, ArgE},
        {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
390
    SpMM(op, reduce_op, graph.sptr(), U, E, V, {ArgU, ArgE});
391
392
  });

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_forward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray U = args[2];
    NDArray E = args[3];
    NDArray V = args[4];
    Edge_softmax_forward(op, graph.sptr(), U, E, V);
});

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelEdge_softmax_backward")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    NDArray out = args[2];
    NDArray sds = args[3];
    NDArray back_out = args[4];
    NDArray ufeat = args[5];
    Edge_softmax_backward(op, graph.sptr(), out, sds, back_out, ufeat);
});

414
415
416
417
418
419
420
421
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSpMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    const std::string reduce_op = args[2];
    List<Value> list_U = args[3];
    List<Value> list_E = args[4];
    List<Value> list_V = args[5];
422
423
424
425
426
427
428
    List<Value> list_ArgU = args[6];
    List<Value> list_ArgE = args[7];
    List<Value> list_ArgU_ntype = args[8];
    List<Value> list_ArgE_etype = args[9];
    std::vector<std::vector<NDArray>> Arg_vec;  // ArgU + ArgE
    for (int i = 0; i < 4; ++i) {  // ArgU + ArgE + ArgU_ntype + ArgE_etype
      Arg_vec.push_back(std::vector<NDArray>());
429
    }
430
431
432
433
434
435
436
    std::vector<NDArray> U_vec = ListValueToVector<NDArray>(list_U);
    std::vector<NDArray> V_vec = ListValueToVector<NDArray>(list_V);
    std::vector<NDArray> E_vec = ListValueToVector<NDArray>(list_E);
    Arg_vec[0] = ListValueToVector<NDArray>(list_ArgU);
    Arg_vec[1] = ListValueToVector<NDArray>(list_ArgE);
    Arg_vec[2] = ListValueToVector<NDArray>(list_ArgU_ntype);
    Arg_vec[3] = ListValueToVector<NDArray>(list_ArgE_etype);
437
438
439
440
441
442
    for (dgl_type_t etype = 0; etype < graph->NumEdgeTypes(); ++etype) {
      auto pair = graph->meta_graph()->FindEdge(etype);
      const dgl_id_t src_id = pair.first;
      const dgl_id_t dst_id = pair.second;
      NDArray U = (U_vec.size() == 0) ? NullArray() : U_vec[src_id];
      NDArray E = (E_vec.size() == 0) ? NullArray() : E_vec[etype];
443
      CheckCtx(graph->Context(), {U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
444
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
445
      CheckContiguous({U, E, V_vec[dst_id], Arg_vec[0][dst_id], Arg_vec[1][dst_id]},
446
447
          {"U_data", "E_data", "out", "Arg_U", "Arg_E"});
    }
448
    SpMMHetero(op, reduce_op, graph.sptr(), U_vec, E_vec, &V_vec, &Arg_vec);
449
450
  });

451
452
453
454
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
455
456
457
458
459
460
461
    NDArray lhs = args[2];
    NDArray rhs = args[3];
    NDArray out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
462
463
464
465
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    const dgl_type_t src_vtype = pair.first;
    const dgl_type_t dst_vtype = pair.second;
466

467
468
    CheckShape(
        {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
469
470
        {lhs_target, rhs_target, 1},
        {lhs, rhs, out},
471
        {"U_data", "E_data", "V_data"});
472
    SDDMM(op, graph.sptr(), lhs, rhs, out, lhs_target, rhs_target);
473
474
  });

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSDDMMHetero")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_lhs = args[2];
    List<Value> list_rhs = args[3];
    List<Value> list_out = args[4];
    int lhs_target = args[5];
    int rhs_target = args[6];
    std::vector<NDArray> vec_lhs;
    std::vector<NDArray> vec_rhs;
    std::vector<NDArray> vec_out;

    vec_lhs.reserve(list_lhs.size());
    vec_rhs.reserve(list_rhs.size());
    vec_out.reserve(list_out.size());

    for (Value val : list_lhs) {
      vec_lhs.push_back(val->data);
    }
    for (Value val : list_rhs) {
      vec_rhs.push_back(val->data);
    }
    for (Value val : list_out) {
      vec_out.push_back(val->data);
    }
    SDDMMHetero(op, graph.sptr(), vec_lhs, vec_rhs, vec_out, lhs_target, rhs_target);
  });

505
506
507
508
509
510
511
512
513
514
515
516
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelSegmentReduce")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string op = args[0];
    NDArray feat = args[1];
    NDArray offsets = args[2];
    NDArray out = args[3];
    NDArray arg = args[4];
    CheckCtx(feat->ctx, {feat, offsets, out}, {"feat", "offsets", "out"});
    CheckContiguous({feat, offsets, out}, {"feat", "offsets", "out"});
    SegmentReduceDispatch(op, feat, offsets, out, arg);
  });

517
518
519
520
521
522
523
524
525
526
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelScatterAdd")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray idx = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    ScatterAddDispatch(feat, idx, out);
  });

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelUpdateGradMinMaxHetero")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    const std::string op = args[1];
    List<Value> list_feat = args[2];
    List<Value> list_idx = args[3];
    List<Value> list_idx_etype = args[4];
    List<Value> list_out = args[5];
    std::vector<NDArray> vec_feat = ListValueToVector<NDArray>(list_feat);
    std::vector<NDArray> vec_idx = ListValueToVector<NDArray>(list_idx);
    std::vector<NDArray> vec_idx_etype = ListValueToVector<NDArray>(list_idx_etype);
    std::vector<NDArray> vec_out = ListValueToVector<NDArray>(list_out);
    // CheckCtx(feat->ctx, {feat, idx, out}, {"feat", "idx", "out"});
    // CheckContiguous({feat, idx, out}, {"feat", "idx", "out"});
    UpdateGradMinMaxDispatchHetero(graph.sptr(), op, vec_feat, vec_idx, vec_idx_etype, &vec_out);
  });

544
545
546
547
548
549
550
551
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelBwdSegmentCmp")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    NDArray feat = args[0];
    NDArray arg = args[1];
    NDArray out = args[2];
    CheckCtx(feat->ctx, {feat, arg, out}, {"feat", "arg", "out"});
    CheckContiguous({feat, arg, out}, {"feat", "arg", "out"});
    BackwardSegmentCmpDispatch(feat, arg, out);
Zhi Lin's avatar
Zhi Lin committed
552
553
  });

554
555
556
557
558
559
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLKernelGetEdgeMapping")
.set_body([](DGLArgs args, DGLRetValue *rv) {
    HeteroGraphRef graph = args[0];
    *rv = GetEdgeMapping(graph);
  });

560
561
562
563
564
565
566
567
568
569
/*!
 * \brief Sparse matrix multiplication with graph interface.
 *
 * \param A_ref The left operand.
 * \param A_weights The edge weights of graph A.
 * \param B_ref The right operand.
 * \param B_weights The edge weights of graph B.
 * \param num_vtypes The number of vertex types of the graph to be returned.
 * \return A pair consisting of the new graph as well as its edge weights.
 */
570
571
DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMM")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];
    NDArray B_weights = args[3];
    int num_vtypes = args[4];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "The first graph must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "The second graph must have only one edge type.";
    const auto A_csr = A->GetCSRMatrix(0);
    const auto B_csr = B->GetCSRMatrix(0);
    auto result = CSRMM(A_csr, A_weights, B_csr, B_weights);

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
588
589
590
591
592
593
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRSum")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    List<HeteroGraphRef> A_refs = args[0];
    List<Value> A_weights = args[1];

    std::vector<NDArray> weights = ListValueToVector<NDArray>(A_weights);
    std::vector<CSRMatrix> mats;
    mats.reserve(A_refs.size());
    int num_vtypes = 0;
    for (auto A_ref : A_refs) {
      const HeteroGraphPtr A = A_ref.sptr();
      CHECK_EQ(A->NumEdgeTypes(), 1) << "Graphs must have only one edge type.";
      mats.push_back(A->GetCSRMatrix(0));
      if (num_vtypes == 0)
        num_vtypes = A->NumVertexTypes();
    }
608
    auto result = CSRSum(mats, weights);
609
610
611

    List<ObjectRef> ret;
    ret.push_back(HeteroGraphRef(CreateFromCSR(num_vtypes, result.first, ALL_CODE)));
612
613
614
615
616
617
    ret.push_back(Value(MakeValue(result.second)));
    *rv = ret;
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_DGLCSRMask")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
    const HeteroGraphRef A_ref = args[0];
    NDArray A_weights = args[1];
    const HeteroGraphRef B_ref = args[2];

    const HeteroGraphPtr A = A_ref.sptr();
    const HeteroGraphPtr B = B_ref.sptr();
    CHECK_EQ(A->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    CHECK_EQ(B->NumEdgeTypes(), 1) << "Both graphs must have only one edge type.";
    const CSRMatrix& A_csr = A->GetCSRMatrix(0);
    const COOMatrix& B_coo = B->GetCOOMatrix(0);
    CHECK_EQ(A_csr.num_rows, B_coo.num_rows) <<
      "Both graphs must have the same number of nodes.";
    CHECK_EQ(A_csr.num_cols, B_coo.num_cols) <<
      "Both graphs must have the same number of nodes.";

    NDArray result;
    ATEN_FLOAT_TYPE_SWITCH(A_weights->dtype, DType, "Edge weights", {
      result = aten::CSRGetData<DType>(A_csr, B_coo.row, B_coo.col, A_weights, 0.);
    });
637
638
639
    *rv = result;
  });

Zhi Lin's avatar
Zhi Lin committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
#ifdef USE_TVM
DGL_REGISTER_GLOBAL("sparse._CAPI_FG_LoadModule")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    const std::string path = args[0];
    dgl::featgraph::LoadFeatGraphModule(path);
  });

DGL_REGISTER_GLOBAL("sparse._CAPI_FG_SDDMMTreeReduction")
.set_body([] (DGLArgs args, DGLRetValue* rv) {
    HeteroGraphRef graph = args[0];
    NDArray lhs = args[1];
    NDArray rhs = args[2];
    NDArray out = args[3];
    CheckCtx(graph->Context(), {lhs, rhs, out}, {"lhs", "rhs", "out"});
    CheckContiguous({lhs, rhs, out}, {"lhs", "rhs", "out"});
    CHECK_EQ(graph->NumEdgeTypes(), 1);
    // auto pair = graph->meta_graph()->FindEdge(0);  // only one etype in the graph.
    // const dgl_type_t src_vtype = pair.first;
    // const dgl_type_t dst_vtype = pair.second;
    // CheckShape(
    //     {graph->NumVertices(src_vtype), graph->NumEdges(0), graph->NumVertices(dst_vtype)},
    //     {lhs_target, rhs_target, 1},
    //     {lhs, rhs, out},
    //     {"U_data", "E_data", "V_data"});
    COOMatrix coo = graph.sptr()->GetCOOMatrix(0);
    dgl::featgraph::SDDMMTreeReduction(coo.row.ToDLPack(), coo.col.ToDLPack(),
                                       lhs.ToDLPack(), rhs.ToDLPack(), out.ToDLPack());
  });
#endif  // USE_TVM

670
671
}  // namespace aten
}  // namespace dgl